A study of thyroid profile in primary infertility Sarika Munghate^{1*}, Vinita Belsare², Bhushan Mahajan³, Sandip Lambe⁴ ^{1,2,3,4}Assistant Professor, Department of Biochemistry, Government Medical College and Hospital Nagpur, Maharashtra, INDIA. Email: drsarikavt@gmail.com # **Abstract** Infertility is defined as inability of a couple to achieve conception after 1 year of unprotected coitus. 10 to 15% of marriages contracted by men and women prove to be childless. Hormonal conditions like hypothyroidism are one of the etiological factors responsible for female infertility. The aim of the present study was to determine the incidence and prevalence of thyroid dysfunction in patients seeking treatment of infertility. 50 women subjects and 50 controls were selected for the study in the age group 19 years to 35 years. Serum T₃, T₄ and TSH levels were estimated in both population. It was found that the levels of serum TSH were increased significantly and serum T₄ levels were decreased significantly in the study group compared to the controls. **Keywords:** Primary infertility, Hypothalamic- pituitary gonadal axis, T₃, T₄, TSH. ### *Address for Correspondence: Dr. Sarika Munghate, Assistant Professor, Department of Biochemistry, Government Medical College and Hospital Nagpur, Maharashtra, INDIA. Email: drsarikavt@gmail.com Received Date: 20/10/2014 Accepted Date: 02/11/2014 #### INTRODUCTION The desire of women for children is sometimes stronger than self-interest in beauty and figure and may be stronger than dreams of career. Childlessness may severely affect the couples psychological harmony, sexual life and social function. Infertility is defined as inability of a couple to achieve conception after 1 year of unprotected coitus. Primary infertility due to female etiology is much more (40-55%) compared to male etiology. The intactness of Hypothalamic-pituitary gonadal axis is must for fertility. The complex processes of reproduction might be affected at a variety of sites on which thyroid function has an influence. Hormonal conditions like hypothyroidism is one of the etiological factors responsible for female infertility. The cycle is anovulatory in patients of hypothyroidism which may be due to 5,6 - 1. Absent midcycle gonadotropin surge. - 2. Progesterone is low throughout the cycle. - 3. Estrogen levels are low. - 4. Reduction in sex hormone binding globulin (SHBG). - 5. Increased metabolic estradiol clearance and increased estriol formation. - 6. Enhancement of conversion of androstenendione to testosterone. ## MATERIALS AND METHODS The present study was carried out in the department of biochemistry, Government medical college, Nagpur from January 2004 to March 2005. Patients were selected from those attending the OPD at gynaecology department, Government medical college, Nagpur, 50 women subjects were selected for the study in the age group 19 years to 35 years. 50 controls were selected as same. The study was approved by the Institutional ethics committee. Inclusion criteria consisted of known patients of infertility of age group 19 to 35 years, having H/o infertility of duration more than one year after the marriage, women staying with husband and not using any contraceptives. Patients having history of tubal blockage, gross cervicouterine anomaly, history of tuberculosis or any chronic illness, patients whose husband was either oligospermic or azospermic were excluded from the study. Serum levels of TSH, T₃ and T₄ were estimated in both groups by using kit manufactured by TECO diagnostics. # **OBSERVATIONS AND RESULTS** Table 1: Distribution of study subjects according to age | Ago in years | Number of study subjects | | | | | |-------------------------|--------------------------|----------------|----------|----------------|--| | Age in years | Controls | Percentage (%) | Patients | Percentage (%) | | | ≤ 20 | 2 | 4 | 7 | 14 | | | 21 to 25 | 31 | 62 | 23 | 46 | | | 26 to 30 | 14 | 28 | 12 | 24 | | | $31 \text{ to} \leq 35$ | 3 | 6 | 8 | 16 | | | Total | 50 | 100 | 50 | 100 | | Table 2: Studies showing the values of T₃, T₄ and TSH in study subjects (T₃ values are expressed in ng/ml, mean ±SD, T₄ values are expressed in μg/ml, TSH values are expressed in μIU / ml) | Study Subjects | T ₃ Mean ± SD | T ₄ Mean ±SD | TSH Mean ± SD | | | |----------------|--------------------------|-------------------------|-----------------------------------|--|--| | Controls | 0.83 ± 0.18 | 7.18 ± 2 | $\textbf{2.20} \pm \textbf{1.59}$ | | | | Controls | (0.6 to 1.86)* | (4.8 to 12)* | (0.4 to 6.0)* | | | | Patients | 0.75 ± 0.38 | 6.00 ± 2.88 | $\textbf{4.91} \pm \textbf{4.22}$ | | | | Patients | (0.6 to 1.86)* | (4.8 to 12)* | (0.4 to 6.0)* | | | | p value | 0.1791 | 0.0197 | 0.0000 | | | ^{*}Normal range as given by M/s Teco Diagnostics, USA in the literature of their reagent kits. Table No.2 shows that though there is not a much pronounced difference between the circulating serum levels of T3 in control and in infertile women, they vividly and drastically differ in their T4 and TSH levels. The circulating mean TSH levels in infertile women was found to be significantly increased i.e. more than double that of the controls; while the mean T4 levels were significantly less in the infertile women as compared with that of the controls. Thus a relationship between the thyroid function and the infertility is definitely established. Table 3: Distribution of infertile women according to thyroid status | Thyroid status | Percentage of
total cases studied | T3 Mean ± SD | T4 Mean ±SD | TSH Mean \pm SD | |-----------------------------|--------------------------------------|-----------------------------------|--------------------------------|----------------------------------| | Controls (n=50) | 100 | 0.83 ± 0.18 | 7.18 ±2 | 2.20 ± 1.59 | | Cases
Euthyroid (n=30) | 60 | 0.86 ±0.16 #(0.75 to 0.36) | 7.12 ±1.91 (6.00 to 2.88) | 2.30 ± 1.41 (4.91 to 4.22) | | P value | - | p>0.05 | p>0.05 | p>0.05 | | Controls (n=50) | 100 | $\textbf{0.83} \pm \textbf{0.18}$ | $\textbf{7.18} \pm \textbf{2}$ | 2.20 ± 1.59 | | Cases
Hypothyroid (n=18) | 36 | 0.46 ±0.26** #(0.75 to 0.38) | 3.52 ±2.12** (6.00 to 2.88) | $4.80 \pm 2.83**$ (4.91 to 4.22) | | P value | | 0.000 | 0.001 | 0.000 | | Control | | 0.83 ± 0.18 | $\textbf{7.18} \pm \textbf{2}$ | 2.20 ± 1.54 | | Cases
Hyperthyroid (n=2) | 4 | 1.64 ± 1.37** #(0.75 to 0.38) | 11.52 ± 3.75** (6.00 to 2.88) | $0.19 \pm 283** (4.91 to 4.22)$ | | P value | | 0.000 | 0.005 | 0.08 | ^{**} Highly significant change, * Significant change, # The values in parentness are the figures found in total number of subjects. Table No. 3 shows that 36% of infertile women had significantly lowered values of both T3 and T4 as compared to normal control and at the same time they had significantly increased TSH values. This shows that the decreased thyroid function does play a role in the total evaluation of infertility of the affected subjects. Amongst the total cases studied only 4% were found to have increased T3 and T4 with significantly decreased TSH values. These results show that hyperthyroidism has profound effect as that of hypothyroidism in the resulting conception of affected women. However incidence of infertility in hyperthyroid patients seems to be much low as compared to the hyporthyroid patients. p value < 0.05- Statistically significant p value<0.001- Statistically highly significant p value>0.05- Not significant. ### DISCUSSION Infertility may severely affect the couples psychological harmony, sexual life and social function. For diagnosing this disorder it is desirable to establish the functional state of hypothalamic pituitary ovarian (H-P-O) axis. As any thyroid disorder can lead to the defect in reproductive function leading to anovulation, it is essential to do thyroid hormone levels in these patients. In the present study it was found that serum levels of TSH were increased significantly and T₄ were found to be decreased significantly in study group. While there was a non significant reduction in serum T₃ levels. 70% of the infertile women with normal menstruation had abnormal thyroid function as observed during the study. It was seen that 38% of the oligomenorrhic patients were also suffering hypothyroidism. As reported by Nath et al', 75% of infertile women studied by them having secondary amenorrhea were hypothyroid. Whereas, in our study we have found that 55% of infertile patients with amenorrhea were found to be hypothyroid and 33% were found to be euthyroid while only 12% were found to be hyperthyroid. Results obtained in our study correlated with the studies conducted by Lakshmi Singh et al⁸, Thomas R et al^9 and Lerman et al^{10} . ## **CONCLUSION** During the present study we found that there is a significant increase in TSH level and decrease in T4 level in the patients of infertility compared to controls. Thus a relationship between the hypothyroid function and infertility is definitely established. We found only 4% cases of hyperthyroid infertile females. Thomas R *et al* have also observed that, except for few severe cases, most patients of hyperthyroidism are ovulatory and fertile. We can conclude from this study that treatable endocrine abnormalities identifiable by direct hormonal assay may occur in a high proportion of female partners of infertile relationship. Considering this medical and social implications of infertility in the society and limited reproductive health resources in the developing country like India, direct hormonal evaluation should be an important part of work up of infertile females. #### REFERENCES - Viniker DA et al. Investigations for infertility management. In Rainsbury PA, Viniker DA (eds), Practical Guide to Reproductive medicine, P. No. 93-110, New York Parthenon Publishing Group, 1997. - Yao Mylene and S. Daniel. Infertility. Novak's gynecology. Berek J. 13th edition 2002. Lippincott Williams and William, P.No.973 to 1002 - Liel Y. Harman-Boehm I et al. Medical conditions leading to infertility. Infertility male and female; Vaclav I, Lunenfeld B, 2nd edition, 1993, Churchill Livingstone P. No. 715. - Howkins and Bourne. Shaw's textbook of gynaecology 11th edition, V. Padeibidri and Daftary N. Shirish (as editors) P. No. 203 to 223. BI Churchill Livingstone. - Akande EO, 1975. Plasma concentration of gonadotropins, estrogen and progesterone in hypothyroid women. Br. J of obstet gynecol 82:552. - Goldsmith RE, Sturgis SH, Lerman J 1952. The menstrual pattern in thyroid disease. J Clin endocrinol metab. p 12: 846. - Nath JD, Barooah B et al. Serum T3, T4 level in infertile women. J of obstet and gynaec of India. June 1990; 40(3): 407-409. - 8. Lakshmi Singh, C.G. Agrawal. Thyroid profile in infertile women. J of obstet and gynaecology of India. 40(2), April 1990, 248-253. - Thomas R, Reid RL et al. Thyroid disease and reproductive dysfunction a review obstet gynecol. 1987; 70:789-798. - Lerman: Quoted from Buxton CL, Walter LH et al. Effect of thyroid therapy on menstrual disorders and sterility J.A.M.A. july 17, 1954, Vol (155) No.12; 1035. Source of Support: None Declared Conflict of Interest: None Declared