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INTRODUCTION 
Bioethanol production from lignocellulosic biomass has 

had more attention during recent years due to its vast 

availability and generation of value added products. As 

compared to commercialize first generation bioethanol, 

biomass derived second generation bioethanol not only 
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Bioethanol production from lignocellulosic biomass has 

had more attention during recent years due to its vast 

availability and generation of value added products. As 

compared to commercialize first generation bioethanol, 

ioethanol not only 

replace fossil fuels, but also gives added value to agri and 

forest residues (Sweeney and Xu, 2012

employed currently in bioethanol production from 

lignocellulosic biomass is a sequential process of pre

treatment of biomass to remove lignin and hemicellulose 

followed by enzymatic hydrolysis of residual biomass to 

simple sugars and subsequent conversion to ethanol 

(Sudha and Swamy, 1997). Enzymatic hydrolysis of 

cellulosic biomass is promising option for breakdown of 

lignocellulosics to simple sugars. 

enzymes in the conversion of biomass to ethanol or the 

fermentation products is not economical due to the high 

biomass conversion cost (Sukumaran 

order to make bioethanol production more economical, 

cost of the cellulase enzyme used in the hydrolysis 

process should be decreased by screening efficient 

cellulolytic producers. Cellulases are a group of enzymes 
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viz: endoglucanases (carboxymethylcellulase, E.C. 

3.2.1.4), exoglucanases (avicelase, E.C. 3.2.1.91), and 

cellobiases (β-glucosidase, E.C. 3.2.1.21), act 

synergistically for complete hydrolysis of cellulose to 

glucose (Lynd et al., 2002). In addition to the three major 

groups of cellulolytic enzymes, there are a number of 

other enzymes that attack hemicelluloses viz. xylanase, β-

xylosidase, galactomannase, glucomannase, 

acetylesterase (Veeresh Juturu and Jin Chuan Wu, 2012). 

These enzymes work together to assault cellulose and 

hemicellulose to fermentable sugars. Many bacterial and 

fungal species can produce cellulolytic enzymes; the 

fungal enzymes are usually preferred because they are 

extracellular, adaptive and usually secreted in large 

quantities (Nwodo et al., 2005). Among fungi 

Trichoderma and Aspergillus have been reported to be the 

best cellulase producers and enzyme from these 

organisms are made available commercially (Makut et al., 

2010). The present work focuses on cellulolytic enzyme 

production by a fungal strain, isolated in our laboratory 

from soil samples collected near festering vegetables. 

Enzyme production from any microbial culture is a 

function of fermentation parameters and components of 

the medium which are the key factors influencing the 

production. The present study was carried out to optimize 

the fermentation parameters statistically for maximal 

CMCase and FPase production from an isolated 

Aspergillus sp. The optimization technique of PB design 

was used in the present study to know the effect of each 

media constituent on enzyme production. It has a 

limitation that this method is not able to identify the 

combined or interactive effect of the components of the 

fermentation process. This limitation can be overcome by 

applying statistical experimental designs with the second 

- order model. Initial screening of all production media 

components was done by PB design to identify the most 

significant component of the response variables (CMCase 

and FPase). This is followed by a Central Composite 

Design (CCD) for identification of optimum values of the 

significant components identified earlier for enhanced 

production of enzymes. Artificial Neural Network (ANN) 

was applied for simulation of experimental data obtained 

from central composite design (CCD).  
 

MATERIALS AND METHODS 

Isolation of fungal cultures 
The soil samples collected at festering vegetables near 

Rythu Bazaar, Hyderabad was brought to the laboratory 

in sterile polyethylene bags. The soil sample (1 gm) was 

dissolved in 10 ml of potato dextrose broth and ten 

dilutions were prepared with sterile PD broth. Each 

dilution was spread on to sterile potato dextrose agar 

plates and incubated for 4 – 7 days at 30 °C. After seven 

days of incubation, fungal colonies were isolated and 

further purified by sub-culturing on the potato dextrose 

agar plate.  

Screening and Identification of cellulase producing 

fungi 
Isolated fungal cultures were screened for cellulolytic 

activity quantitatively by inoculating each of these 

cultures in production media by using the sorghum 

biomass (sorghum stalks of < 2mm size) as a carbon 

source (Mandels and Reese, 1957). Fungal inoculum was 

prepared by inoculating a loopful of the fungal spores into 

sterilized potato dextrose broth (30°C, 24hr). The 

inoculum of 10 % (v/v) was inoculated into a conical 

flask containing 100 ml of autoclaved production media 

(Mandel’s Media) and was incubated in a shaker at 120 

rpm (30°C) for 6 days. Two milliliters aliquot of the 

sample was collected from the fermentation medium for 

every day till 6 days to check the enzyme activity. The 

aliquots were centrifuged at 8000 rpm for 15 min at 4°C; 

the supernatants were checked for CMCase and FPase 

activities. Isolated cellulolytic fungi showing highest 

activity was identified based on colony morphology and 

their sporulating structure. A wet mount of culture was 

prepared by suspending in to a few drops of Lacto phenol 

cotton blue solution and observed under light microscope. 

Effect of different lignocellulosic biomass in cellulase 

enzyme production 
Among the tested organisms, the strain showing highest 

activity was used for enzyme production with various agri 

residues of rice straw, sorghum stalks (Two different 

varieties named as Sorghum Biomass-1 and Sorghum 

Biomass-2, based on their Lignocellulosic content) and 

sugar cane bagasse.  

Plackett-Burman method 
Eleven media components were screened for optimal 

production of CMCase and FPase enzymes by employing 

a two level fraction factorial Plackett-Burman design. 

This method is very useful and widely applied for 

screening the major components of production media 

(Bari et al., 2009). The independent variables selected for 

this study were (g/100 ml): Peptone - 0.2, Urea -0.03, 

ZnSO4-1.4 mg, MgSO4-0.03, FeSO4-0.05, KH2PO4-0.02, 

CaCl2-0.01, and Sorghum Biomass-2, Ammonium Sulfate 

-0.14. For Plackett-Burman analysis, each media 

component at two levels of concentrations was selected. 

The total number of experiments with combination of 

different components and their levels were 12 as given in 

Table 1. The experiment was conducted in 250 ml conical 

flask with 100 ml sterile Mandel’s medium. Three trial 

runs have been taken to assess the reproducibility of 

results. After 72 hours of incubation the culture broth was 

collected and centrifuged at 8,000 rpm for 15 min at 4 °C 

and the supernatant containing the crude enzyme was 

checked for CMCase and FPase activity. The main effect 
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of each variable was calculated as the difference between 

the average of measurements made at the high value (+) 

and at the low value (-) (Rashid et al., 2009). Plackett-

Burman experimental design is based on the first order 

model  

Y = β0 + Σ βi Xi 
Where Y is the response variable (CMCase and FPase 

activity), β0 is the model intercept and βi is the variable 

estimates. The factors that have a confidence level above 

95% are considered as the most significant factors that 

affect enzyme production. 

Response Surface Methodology (RSM) 
Medium components showing a positive effect on both 

enzyme production from Plackett-Burman design were 

selected and their concentration was optimized by using 

Response Surface Methodology (Design-Expert version 

7.1.6 (Stat-Ease, Inc.,), software). The parameters 

considered in the RSM experiments were Sorghum 

Biomass, MgSO4 and Peptone (Table 3). The 2
3 

Central 

Composite Rotatable Design (CCRD) with three 

independent variables at two levels, six star (axial) points 

and five central points (total 20 runs) was adopted to find 

linear, quadratic and interaction effects of independent 

process variables on experimental responses. A second 

order polynomial model was fitted to each set of 

experimental data to predict optimal reaction conditions 

by following equation: � = �� + Ɖ���� + Ɖ������ + Ɖ��	���	 
Where Y is the value of the response and X is the coded 

value of factors, i and j are the linear and the quadratic 

value of coefficients. The statistical significance of 

regression coefficients and effects was checked by 

analysis of variance (ANOVA). 

Artificial Neural Network (ANN) 
A feed forward neural network (multilayer perception) 

with back propagation algorithm is widely applied for 

prediction (Rummelhat et al., 1986). Multilayer 

perceptron consisting of three layers input, hidden and 

output layer, which are connected by neurons. 

Information in a BNN (Backpropagation Neural 

Network) is stored as weights, which are the connections 

between neurons in successive layers and as bias values 

(Mullai and Rene, 2008). Each neuron in the hidden and 

output layers first calculates the weighted sum of its 

inputs and passes the result through a transfer function to 

produce an estimate as output that corresponds to the 

input data set. The result is compared to the 

corresponding desired values and the error is back-

propagated through the network to adjust the connection 

weights according to the learning rule. This procedure is 

repeated iteratively, until the predetermined target RMSE 

is reached. The type of transfer function employed affects 

the neural network learning rate and is instrumental in its 

performance (Ajdari et al., 2013). The hyperbolic tangent 

was used as the transfer function for the input and hidden 

layer nodes and linear activation function was used as the 

output layer activation function. The algorithm used to 

train the ANN in this study was Levenberg-Marquandt 

(LM) algorithm. The networks with few hundred weights, 

the LM algorithm is best suitable with fastest 

convergence with lower mean square error than other 

algorithms in many cases (Demuth and Beale, 2005). The 

number of neurons in hidden layer for each model varies 

and it is determined by trial and error. Trials have been 

done for model by changing the number of hidden 

neurons in order to find the best structure. The best 

number of nodes was selected from the model that gave 

the best performance with highest correlation coefficient 

(R-value). Data generated from CCRD was used for 

modeling in the ANN by Matlab 7.4 software. 

Validation of optimized Conditions 

To test reliability and estimation capabilities of employed 

techniques the predicted response obtained from RSM 

and ANN were compared with the experimental Values 

(Table 3). The Coefficient of determination (R
2
) and 

Absolute Average deviation (AAD) of RSM and ANN 

were evaluated and compared. AAD and R
2 

were 

calculated by the following formula  
 

AAD = � ���(��,��� − ��,����/�
�� ��,���)/"#$ × 100 

(� = 1 − ∑ (*+,-. "/-,0120+3� − 4�"-/05-326. 76.8-�)��� 9:∑ (;<-/6=- 4�"-/05-326. 76.8- − 4�"-/05-326. 76.8-�)��� 9:  

 

Where Yi, exp and Yi, cal are the experimental and 

calculated responses, ‘p’ is the number of the 

experimental run and ‘n’ is no. of experimental data. R
2
 is 

a measure of the amount of the reduction in the variability 

of response obtained. It
 
must be close to 1 and AAD 

between the predicted and observed data must be as small 

as possible (Bas and Boyasi, 2007). 

Analytical Methods 
CMCase activity was measured by the method of T.K. 

Ghose, 1987, where determination of the amount of 

reducing sugars liberated from 1% 

carboxymethylcellulose (CMC) (100 mM citrate buffer, 

pH 4.5) by the action of enzyme. Enzyme substrate 

mixture was incubated at 50 °C for 15min and the 

reaction was stopped by the addition of DNSA solution 

(Miller, 1959). One unit of CMCase activity was defined 

as the amount of enzyme that released 1 µ mole of 

glucose per minute under given set of conditions. 

Similarly FPase activity was measured by using the same 

procedure as mentioned above by using Whatman No.1 

filter paper (50 mg) as substrate.
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RESULTS AND DISCUSSION 
Isolation of the cellulase producing fungi 

Among the four different fungal cultures isolated, the 

culture showing better activity was selected for further 

screening. The morphological studies and microscopic 

analysis of the selected fungal strain showed that the 

species belongs to the genus of Aspergillus (Figure 1). 

From figure 2 it is evident that both CMCase and FPase 

activities were high when sorghum biomass 2 present in 

the production medium as compared to other biomass and 

the same was used through the study. The highest 

activities of CMCase and FPase enzyme were 1 IU/ml of 

CMCase and 1.1 IU/ml at 72hr of fermentation period 

50
o
C.  

Palckett-Burman Method (PB) 
The PB experiment was conducted in 12 runs to evaluate 

the significant effect of eleven media components on the 

production of both enzymes using Aspergillus sp.. Table 

1 shows PB experimental design and enzyme activities. 

The main effect of each constituent on the CMCase and 

FPase production was calculated as the difference 

between the average measurement calculated at the higher 

(+) and lower (-) levels of the constituent (Figure 3). The 

positive value indicates that the high concentration of this 

variable is near optimum and a negative value indicates 

that the low concentration of this variable is near 

optimum (Pal and Khanum, 2011). The obtained data 

showed a range of positive main effect values, indicating 

that the presence of high levels of Peptone, Urea, MgSO4 

and Biomass has a positive effect on production of both 

enzymes. On the other hand, the presence of MnSO4, 

ZnSO4, FeSO4, and CaCl2 showed negative effect on 

CMCase and FPase production. The fermentation 

parameters, which were showing negative effect on 

enzyme production were not taken into account, while 

three factors showing significant positive effect were 

selected for next optimization strategy. 

Response Surface Methodology 

The three different influential factors for enzyme 

production viz; Sorghum Biomass, Magnesium sulfate, 

Peptone were selected for RSM analysis. Minimum and 

maximum concentrations of each selected parameter were 

fixed based on preliminary experimental results and 

literature review (where optimum enzyme production was 

noticed). Experimental design presented in Table 2 was 

prepared using the above selected parameter levels 

according to fractional factorial central composite design. 

It was noticed that the enzyme production values vary 

depending on the experimental conditions (Table 2). The 

results clearly indicated the influence of the selected 

fermentation factors of CMCase and FPase production, 

where minimum and maximum enzyme activities were 

noticed as 1.098 to 4.718 IU/ml and 3.620 to 6.29 IU/ml. 

Which depicts the best possible optimal conditions 

obtained for CMCase and FPase after performing 

response surface methodology. Figures 4 and 5 describe 

the response obtained by designing contour and surface 

plots. The response was explained with quadratic 

regression model and expressed by a second order 

polynomial equation. The coefficients of the equation, 

analysis of variance (ANOVA) were shown in the Table 

3. 

Where,  

Final Equation in Terms of Coded Factors  

Y1 =2. 614827+0.291427 * A+-0.14388 * B+0. 818998 * 

C+0. 0275 * A * B+0. 2025 * A *  

C+0. 26 * B * C0. 257454* A^2-0.02362 * B^2-0.0908 * 

C^2 

Y2 = 5.496711+0.050757 * A-0.12704 * B-0.23262 * C-

0.045 * A * B-0.1625 * A *  

C+0. 2675 * B * C-0.70445 * A^2-0.24129 * B^2+0. 

094581 * C^2 

Where Y1, Y2 are response terms of CMCase and FPase. 

A, B and C are response 

variables for Peptone, Biomass and MgSO4. The 

optimized media composition was Presented in the Table 

4. The optimum activities of the CMCase and FPase were 

3.52 IU/ml and 5.56 IU/ml. An isoresponse surface plot 

on behalf of the effect of peptone and biomass was 

observed for CMCase production (Figures 4a). An 

increase in the concentration of peptone up to 0.3 g and at 

low levels of biomass 0.5g had showed improved 

CMCase Production. The graphical illustrations in Figure 

4b reveal that the FPase activity was optimum at its 

centre point & followed a shallow surface. Increase in 

peptone and biomass concentration increased FPase 

activity from 2.2 IU/ml to 5.33 IU/ml at center point and 

then starts decreasing as the concentration of the variables 

increases. Figure 5a depicts that at higher concentration 

of peptone and MgSO4, highest CMCase activity of 3.69 

IU/ml was noticed. Figure 5b illustrates the interaction 

behavior of the peptone and MgSO4. FPase activity (5.64 

IU/ml) was more at low concentrations of MgSO4 and at 

the peptone concentration of 0.2 g. These plots showed a 

highest activity at center point and decreased at extreme 

operating conditions. The more non–elliptical nature of 

the contour plots describes that there is no mutual 

interaction between the tested variables (Mullai and 

Fathima, 2010). As the MgSO4 concentration is 

increased, an increase in CMCase activity was noticed at 

biomass concentration of 1.25% (Figure 6a). Further, the 

surface plot (Figure 6b) showing interactions between 

biomass and MgSO4 showed a rather complex behavior in 

comparison to those explained earlier. Low levels of 

MgSO4 and biomass concentration increased the FPase 

activity and decreased further. 
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Artificial Neural Networks 
The Central Composite Design experimental data was 

divided into training and testing sets. For training, among 

a total of 20 experimental runs 17 runs (approx. 70%) 

were selected and remaining 3 runs (approx. 20%; the 

data shown in bold letters in Table 2) were used for 

testing. Various topologies (from 1 to 20 hidden neurons) 

were examined using the LM algorithm. The optimum 

topology was selected based on the minimum error of 

testing (R). After repeated trials, it was found that a 

network with 15 hidden neurons produced the best 

performance and a network topology of 3-15-1 was used. 

The results for training and testing data were summarized 

and presented in Table 2 for both CMCase and FPase. 

The scatter diagram of predicted values versus actual 

values was also shown in Figure 7. It shows that the 

model prediction fits well with the experimental 

observations. Minor variation in the prediction may be 

due to the inherent variability of the biological system 

(Singh et al., 2008). The goodness of fit was determined 

by the coefficient R
2
, which describes the extent of 

variance in the modeled variables (Table 5). The 

developed model was used to predict the enzyme 

production at optimum conditions as shown in Table 4. 

Comparison of RSM and ANN Models  
The estimation capabilities of RSM and ANN were also 

examined in this study. The predicted responses, obtained 

from RSM and ANN, were compared with the actual 

values (Experimental Value). The root mean square error 

(RMSE), coefficient of determination (R
2
) and absolute 

average deviation (AAD) were used together to compare 

the RSM and ANN for CMCase and Fpase. The actual 

and predicted values for the RSM and ANN design were 

presented in Table 2. The comparative values of RMSE, 

R
2
 and AAD were given in Table 5. The root mean 

squared error (RMSE) for the design matrix by the RSM 

and ANN for CMCase and FPase is 0 0.035 and 0.46211 

and 0.046 and 0.544; the coefficient of determination for 

both RSM and ANN (R
2
) is 0.999. 

 

Table 1: Plackett Burman Design and the response variable (CMCase and FPase) 

A-

Peptone 

B-

Ure

a 

C-

MnSO4 

D-

ZnSO4 

E-

MgSO4 

F-

FeSO4 

G-

CoCl2 

H-

KH2PO4 

J-

CaCl2 

K-

Biomass 

L-

Ammonium 

Sulphate 

CMCase 

(IU/ml) 

FPase 

(IU/ml) 

0.2 0.03 0 0 0 0.05 0 0.02 0.01 1 0.14 1.108 1.664 

0.2 0.03 0 1.4 0.03 0.05 0 0 0 2 0 2.555 3.724 

0.2 0 0 0 0.03 0 2 0.02 0 2 0.14 2.277 3.58 

0.1 0.03 1.6 0 0.03 0.05 2 0 0 1 0.14 1.055 1.9038 

0.1 0 0 1.4 0 0.05 2 0 0.01 2 0.14 0.499 0.6716 

0.2 0 1.6 1.4 0.03 0 0 0 0.01 1 0.14 1.087 3.335 

0.1 0 1.6 0 0.03 0.05 0 0.02 0.01 2 0 0.049 1.997 

0.1 0 0 0 0 0 0 0 0 1 0 1.4178 0.4829 

0.1 0.03 1.6 1.4 0 0 0 0.02 0 2 0.14 0.3052 2.6642 

0.2 0 1.6 1.4 0 0.05 2 0.02 0 1 0 0.9155 1.2261 

0.1 0.03 0 1.4 0.03 0 2 0.02 0.01 1 0 1.7326 3.4913 

0.2 0.03 1.6 0 0 0 2 0 0.01 2 0 1.6605 1.9038 

 

Table 2: RSM design and experimental and predicted values by RSM and ANN 

Media Components CMCase Activty (IU/ml) FPase Activity (IU/ml) 

Peptone Biomass MgSO4 Experimental Predicted by RSM ANN Experimental 
Predicted by 

RSM 

Predicted By 

ANN 

0.3 0.5 0.01 2.42 2.404178 2.42 5.52 5.530961 5.52 

0.2 1.25 0.02 2.58 2.614827 2.615 5.43 5.496711 5.474 

0.031821 1.25 0.02 2.9 2.852898 2.9 3.4 3.418864 3.4 

0.1 0.5 0.01 2.24 2.281324 2.24 5.02 5.014448 5.02 

0.2 1.25 0.003182 0.98 0.980634 2.5476 6.21 6.155437 4.2701 

0.2 2.511345 0.02 2.27 2.306037 2.27 4.65 4.600568 4.65 

0.2 -0.01134 0.02 2.82 2.789999 2.82 4.98 5.027884 4.98 

0.3 2 0.01 1.68 1.651412 1.68 4.6 4.651878 4.6 

0.2 1.25 0.02 2.72 2.614827 2.615 5.44 5.496711 5.474 

0.2 1.25 0.02 2.61 2.614827 2.615 5.61 5.496711 5.474 

0.2 1.25 0.036818 3.73 3.735403 3.73 5.32 5.373015 5.32 

0.1 2 0.01 1.42 1.418558 2.615 4.28 4.315364 4.28 

0.2 1.25 0.02 2.59 2.614827 1.98 5.46 5.496711 5.474 

0.2 1.25 0.02 2.61 2.614827 2.615 5.51 5.496711 5.474 
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0.368179 1.25 0.02 3.78

0.1 0.5 0.03 2.97

0.1 2 0.03 3.16

0.2 1.25 0.02 2.58

0.3 0.5 0.03 3.93

0.3 2 0.03 4.26

Table 3: ANOVA Results for the CCRD for FPase and CMCase. For FPase,R

0.981824; For CMCase:R-Squared

 CMCase

 
Sum of Squares F-Value

Model 12.65217 520.4797

A-Peptone 1.159873 429.4297

B-Biomass 0.282728 104.6766

C-Mgso4 9.160431 3391.543

AB 0.00605 2.239942

AC 0.32805 121.4567

BC 0.5408 200.2249

A^2 0.95522 353.6593

B^2 0.00804 2.976892

C^2 0.118805 43.98601

 

Table 4: Optimum Response predicted by RSM and ANN and the experimental values

 
Peptone Biomass MgSO4 Experimental

0.22 1.57 0.03 

 

 

 
RMSE

CMCase 0.46211

FPase 0.544

Figure 1: 

Figure 2: 
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3.78 3.833139 3.78 3.61 

2.97 2.994319 2.97 4.39 

3.16 3.171553 3.16 4.72 

2.58 2.614827 2.615 5.53 

3.93 3.927173 3.93 4.24 

4.26 4.214408 3.3181 4.39 

 

ANOVA Results for the CCRD for FPase and CMCase. For FPase,R-Squared-0.995712, Adj R-Squared-0.991852, Pred R

Squared-0.99787, Adj R-Squared - 0.995953Pred R-Squared-0.990634

CMCase FPase 

Value p-value Prob > F Sum of Squares F-Value 

520.4797 < 0.0001 9.848877 257.9867 

429.4297 < 0.0001 0.035183 8.294496 

104.6766 < 0.0001 0.220416 51.96335 

3391.543 < 0.0001 0.738972 174.2131 

2.239942 0.1654 0.0162 3.819162 

121.4567 < 0.0001 0.21125 49.80234 

200.2249 < 0.0001 0.57245 134.9555 

353.6593 < 0.0001 7.151595 1685.994 

2.976892 0.1152 0.839071 197.8117 

43.98601 < 0.0001 0.128917 30.39224 

Optimum Response predicted by RSM and ANN and the experimental values

CMCase FPase

Experimental RSM ANN Experimental RSM

3.52 3.525401 3.8297 5.56 5.301973

Table 5: Comparison of RSM and ANN 

ANN RSM 

RMSE R
2
 %AAD RMSE R

2
 %AAD 

0.46211 0.978 18.309 0.035 0.999 0.046 

0.544 0.997 0.1328 0.046 0.999 0.04 

 

 
Figure 1: Structure of Aspergillus sp. under microscope 

 

Figure 2: CMCase and FPase activities on different biomass 

 

lume 13, Issue 1, 2014 pp 154-162 

8109, Volume 13, Issue 1 2014 

3.589588 3.61 

4.339217 4.39 

4.710133 6.1823 

5.496711 5.474 

4.20573 4.24 

4.396647 4.39 

0.991852, Pred R-Squared-

0.990634 

p-value Prob > F 

< 0.0001 

0.0164 

< 0.0001 

< 0.0001 

0.0792 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

0.0003 

Optimum Response predicted by RSM and ANN and the experimental values 

FPase 

RSM ANN 

5.301973 5.0927 

 



Konakalla Radhika, Uma Addepally, Tulluri Chiranjeevi, Satya Lakshmi Kota 

International Journal of Recent Trends in Science And Technology, ISSN 2277-2812 E-ISSN 2249-8109, Volume 13, Issue 1, 2014                                         Page 160 

 
Figure 3: Main effects of the medium constituents on CMCase and FPase production from Plackett Burman experimental results 

   

 
Figure 4a & 4b: Response surface plots of CMCase and FPase for Peptone and Biomass at  MgSO4 concentration of 0.2grams 

 

 
Figure 5a & 5b: Response surface plots of CMCase and FPase for Peptone and MgSO4 at biomass concentration of 1.25 gram 

 
Figure 5a & 5b: Response surface plots of CMCase and FPase for Peptone and MgSO4  at biomass concentration of 1.25 gram 
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Figure 7: The scatter plot of RSM and ANN model predicted values versus actual values for CCRD design matrix for CMCase and FPase

 

CONCLUSION 
In the present study, eleven constituents of the Mandel’s 

media were studied by experimental designs of Plackett

Burman, RSM and Back Propagation Neural Networks.

PB analysis showed that the factors Peptone, Urea, 

MgSO4 and Sorghum biomass were influencing the 

CMCase and FPase production positively

components which showed a positive effect on production 

were selected and a 2
3
 full factorial central composite 

design were applied to study the combined effects of the 

nutrients. The optimal concentration obtained from RSM 

was Sorghum biomass (1.57 %), Peptone (0.22%), and 

MgSO4 (0.03%). The PB and CCD optimum media 

formulation increased CMCase and FPase activity from 

1.2 IU/ml and 0.95 IU/ml to 3.52 IU/ml and 5.56 IU/ml 

respectively. The performance of the CCRD (Central 

Composite Rotatable Design) design with Back 

Propagation ANN in the estimation of fermentation 

parameters (Peptone, MgSO4 and Sorghum biomass) for 

CMCase and FPase production from Aspergillus sp. 

studied. Both models provide quality predictions for the 

three independent variables in terms CMCase and FPase 

production with ANN showing more accuracy in 

estimation. The superiority of ANN over RSM would 

make the estimation technique a very helpful tool 

is well suited for modeling the fermentation process.
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In the present study, eleven constituents of the Mandel’s 

media were studied by experimental designs of Plackett-

RSM and Back Propagation Neural Networks. 

PB analysis showed that the factors Peptone, Urea, 

and Sorghum biomass were influencing the 

CMCase and FPase production positively. The media 

components which showed a positive effect on production 

full factorial central composite 

design were applied to study the combined effects of the 

nutrients. The optimal concentration obtained from RSM 

was Sorghum biomass (1.57 %), Peptone (0.22%), and 

The PB and CCD optimum media 

mulation increased CMCase and FPase activity from 

1.2 IU/ml and 0.95 IU/ml to 3.52 IU/ml and 5.56 IU/ml 

respectively. The performance of the CCRD (Central 

Composite Rotatable Design) design with Back 

Propagation ANN in the estimation of fermentation 

and Sorghum biomass) for 

Aspergillus sp. was 

studied. Both models provide quality predictions for the 

three independent variables in terms CMCase and FPase 

production with ANN showing more accuracy in 

stimation. The superiority of ANN over RSM would 

make the estimation technique a very helpful tool which 

is well suited for modeling the fermentation process. 
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