Dermatoglyphic study in grand mal epilepsy

Sumati Hiremath^{1*}, P S Sonone², N R Mudiraj³, R B Vaidya⁴

Department of Anatomy, Bharati Vidyapeeth Deemed University Medical College and Hospital, Wanlesswadi, Sangli-416414, Maharashtra, INDIA.

Email: swamisamarathsumati2014@gmail.com

Abstract

Dermatoglyphic in epilepsy have been studied by a number of workers seens 1905. Dermatoglyphics in Grand Mal epilepsy alone have not been studied by any worker so far. 160 Grand Mal epileptic patients (80 Males and 80 females from the age group 18 to 50 years) Were chosen for study As control 80 healthy males and 80 healthy females from the same age group were chosen. Palmer Dermatoglyphics of both patients and controls were recorded by standard ink method. Analysis revealed statistically significant changes as regards: 1) Radial loops 2) I4 patterns 3) ab, bc, cd, ridge counts in Grand-Mal epileptics.

Keywords: 1) Dermatoglyphics 2) Epilepsy 3) Grand –Mal epilepsy.

*Address for Correspondence:

Dr. Sumati Hiremath, Department of Anatomy, Bharati Vidyapeeth Deemed university medical college and Hospital, Wanlesswadi, Sangli-416414, Maharashtra, INDIA.

Email: swamisamarathsumati2014@gmail.com

Received Date: 13/04/2015 Revised Date: 19/04/2015 Accepted Date: 22/04/2015

Access this article online						
Quick Response Code:	Website:					
	www.statperson.com					
	DOI: 24 April 2015					

INTRODUCTION

Epilepsy in common language means seizure. Although variety of factors influence incidence and prevailance of seizures, approximately 5to 10 % of the normal population will have at least oneseizure during their life time. Generalized, Tonic-Clonic seizures are called Grand Mal epilepsy. It forms 10% of all the forms of epilepsy, and is the most common type of epilepsy (Harrison 2001). The neurologists agree that the disease has got a strong genetic bases and it usually runs in families.bIt is well known fact that the study of epidermal ridges and flexion creases over palms and soles — that is Dermatoglyphics also has got a strong genetic base. Therefore it is only natural that specific Dermatoglyphic patterns are found in Epilepsy.

MATERIAL AND METHOD

A total number of 160 Grand Mal epileptic patients (80 Males and 80 females) from the age group 18 to 50 years were chosen form Neurology department Miraj Medical Center, Wanless Hospital Miraj, for the present study. Their palmer Dermatoglyphics were recorded using standard ink method. As control, 80 healthy males and 80 healthy females from the age group 18 to 50 years were selected.

Method

The method used in the present study was Standard ink method. All prints were studied and analyzed for the following parameters (traits) Qualitative analysis

- a. Fingertip patterns
- b. Thenar, Hypothenar, interdigital patterns ieth/I1, I2. I3.I4 Patterns
- c. Simian crease
- d. Sydeny line
- e. Ridge dissociation

Quantitative analysis

- a. Finger ridge count
- b. Total finger ridge count (TFRC)
- c. 'atd' angle
- d. Ridge Count of interdigital area including a-b, b-c and c-d ridge count.

The data thus collected was subjected to the following statistical test

- 1. Mean
- 2. Standard deviation (S.D)
- 3. 'Z' test Value
- 4. Fisher's Exact test.

OBSERVATIONS

Qualitative Traits

Table 1: Percentage frequency of fingerprint patterns in Grand Mal epileptic and Normal Males

	Grand Mal Epileptic		No	rmal	- X ²	P value	Significance
	No	%	No	%		P value	Significance
Whorls	269	33.62	353	41.12			
Ulnar loop	421	52.62	403	50.31		0.000	Highly significance
Radial loop	71	8.81	8	1	62.08	0.000	
Arches	39	4.86	36	4.5			

Table No.1 Shows that difference in the frequency of all patterns distribution in controls compared Grand Mal epileptic males is statically highly significant (p<0.000). This can be largely attributed to the difference in frequency of whorls, which is decrease significantly (p<0.000). The whorls are significantly less in Grand Mal epilepsy as compare to their control and Radial loop have increase markely.

Table 2: Percentage frequency of fingerprint patterns in Grand Mal epileptic and Normal Females

	Grand Mal Epileptic	Normal		- y ²	Duralina	Cinnificance		
	No	%	No	%	Α .	P value	Significance	
Whorls	226	33.25	247	30.87			Highly significance	
Ulnar loop	283	35	479	59.87		0.000		
Radial loop	207	8.81	5	0.625	244.769			
Arches	47	5.875	69	8.625				

Table No.2 Shows that difference in the frequency of all patterns distribution in controls and Grand Mal epileptic females is statically highly significant (p<0.000).,Radial loop increased Substantially. The significance difference between proportions is mainly due to decreased ulnar loop and arches which is highly significant. The arches are significantly less in grand mal epilepsy as compare to their controls.

 Table 3: Frequency distribution of patterns in Thenar, HYpothenar and interdigital areas of Right hand of Grand Mal epileptic and Normal

				Males					
Palmar Area	Subject	Presence of pattern	%	Absence of pattern	%	Χ ²	P Value	Significance	
Th /I 1	GE	2	2.5	78	97.5	0.256	0.613	Not significant	
111/1-1	Th/I-1 Normal	2	2.5	78	97.5	0.256			
I-2	GE	5	6.25	75	93.75	1.77	0.278	Not significant	
1-2	Normal	10	12.5	70	87.5	1.//			
I-3	GE	39	48.75	41	51.25	0.213	0.645	Not significant	
1-5	Normal	36	45	44	55	0.215			
1.4	GE	23	28	57	71	12.316	0.000	Highly significant	
I-4 Norm	Normal	51	63.75	39	48.75	12.310	2.316 0.000	Highly significant	
Uka	GE	12	15	68	85	0.655	0.418	Not significant	
Ну	Normal	15	18	55	0.655	0.055	0.418	Not significant	

Table No. 3There is decrease in frequency of in I4 patterns of right hand in grand mal epileptic males as compared to controls their controls. This difference is statically highly significant (P<0.01)

Table 4: Frequency distribution of patterns in Thenar, HYpothenar and interdigital areas of left hand of Grand Mal epileptic males and

Palmar Area	Subject	Presence of pattern	%	Absence of Pattern	%	Χ ²	P Value	Significance
Th/I 1	GE	2	2.5	78	90	0.514	0.473	Not significant
Th/I-1	Normal	2	2.5	78	85	0.514		
I-2	GE	5	6.25	75	96.25	7.574	0.006	Highly significant
1-2	Normal	10	12.5	70	81.25	7.574	0.000	
1.2	GE	39	48.75	41	72.5	0.200	0.605	Not significant
I-3	Normal	36	45	44	67.5	0.268		
1.4	GE	23	28	57	71.25	0.205	0.004	Highly significant
I-4	Normal	51	63.75	39	47.5	8.395	0.004	
Ну	GE	12	15	68	92.5	0.09	0.764	Not significant
	Normal	15	18	55	92.5	0.09	0.764	Not significant

Table No. 4 it is clear that percentage of frequency of presence of patterns in Th/I1 I2I4is lower in grand mal epileptic males compare to control males. There is decrease in frequency of presence in I4 patterns of left hand in grand mal epileptic males as compared to controls their controls. This difference is statically highly significant (P<0.01)

Table 5: Sex -wise distribution of Ridge Dissociation of in Grand Mal epileptic and Normal Females

Sex	Subject	Right hand	Left hand	Χ ²	P value	Significance
Mala	GE	15	15	0.015	0.002	Not sig
Male	Normal	13	12		0.902	Not.sig.
famala	GE	13	13	Fisher's exact test P=1.00		significant
female	Normal	1	1	risher's e	significant	

Table No.5 Shows increased occurrence of ridge dissociation in grand mal epilepsy in both hands in females as compared to their controls. But these differences are not statically significant in male and it is significant in female.

Quantitative traits

Table 6: Mean atd angle (in degree) in grand mal epileptic and normal Males

Hand	Grand Mal Epileptic	Normal			- Z Value	P value	Significance	
папи	Х	S.D	X	S.D	Z value	P value	Significance	
Right	43.7	60.1	41.55	3.90	2.684	0.008	Hig.significant	
Left	44.07	5.42	42	3.920	2.768	0.006	Hig.significant	

Table No.6Shows that values of mean 'atd' angle of both hands is increased in grand mal epilepsy males as compared to that of the controls. These differences are statistically highly significant. (P<0.05)

Table 7: Mean 'atd' angle (in degree) in grand mal epileptic and normal Females

Hand —	Grand Mal Epileptic	Normal			– Z Value	Duelue	Significance	
	Х	S.D	Х	S.D	2 value	P value	Significance	
Right	43.114	5.267	42.7	4.574	0.531	0.596	Not sig	
Left	44.36	5.68	42.9	4.52	1.881	0.062	Not sig	

Table No.7 Table No.6Shows that values of mean 'atd' angle of both hands is Slightly higher in grand mal epileptic females as compared to that of the controls. But these differences are not statistically significant. (P<0.05)

Table 8: Mean 'a-b' Ridge count in grand mal epileptic and normal subjects

Hand Sex		Grand Mal Epileptic	Z Value	P value	Significance		
папи	Sex	X(S.D)	X(S.D)	Z value	P value	Significance	
Right	Male	35.71(5.71)	38.33(5.44)	2.971	0.003	Hig.significant	
rigiit	Female	32.72(5.67)	41.4(5.12)	8.9920	0.000	Hig.significant	
Left	Male	35.88(6.43)	40.48(5.685)	5.368	0.000	Hig.significant	
Lert	Female	34.51(5.994)	42.85(5.37)	9.273	0.000	Hig.significant	

From above Table No.12 It is clear that mean a-b' Ridge count is reduced of both hands is in grand mal epileptic male and females as compared to that of the controls. Which is statistically highly significant. (P<0.00)

Table 9: Mean 'b-c' Ridge count in grand mal epileptic and normal subjects

Hand Sex		Grand Mal Epileptic	Z Value	P value	Significance		
папи	Sex	X(S.D)	X(S.D)	Z value	P value	Significance	
Diabt	Male	23.80(6.052)	27.81(5.71)	4.311	0.000	Hig.significant	
Right	Female	23.107(3.952)	27.66(5.12)	6.296	0.000	Hig.significant	
Left	Male	24.82(4.32)	27.17(5.44)	3.026	0.003	Hig.significant	
Leit	Female	22.8 (5.08)	27.39(5.27)	5.609	0.000	Hig.significant	

From above Table No.9 It is clear that mean 'b-c' Ridge count is reduced of both hands is in grand mal epileptic male and females as compared to that of the controls. This is statistically highly significant. (P<0.00)

Table 10: Mean 'c-d' Ridge count in grand mal epileptic and normal subjects.

Hand	Sex	Grand Mal Epileptic		Z Value	P value	Significance	
	Sex	X(S.D)	X(S.D)	Z value	P value	Significance	
D'-l-t	Male	33.514(4.257)	36.65(5.33)	4.133	0.000	Hig.significant	
Right	Female	31.3(6.59)	37.82(5.14)	6.978	0.000	Hig.significant	
Left	Male	33.56(7.37)	35.20(7.05)	1.438	0.152	Hig.significant	
Leit	Female	31.33(5.108)	38.64(5.27)	8.907	0.000	Hig.significant	

From above Table No.10 It is clear that mean 'c-d' Ridge count is reduced of both hands is in grand mal epileptic male and females as compared to that of the controls. Which is statistically highly significant.(P<0.00)

DISCUSSION

From the above tables, following important observations can be made

a) Qualitative traits

- Patterns on terminal Phalanx increase in the frequency of Radial loops was seen in Grand – Mal epilepsy males and females. In normal population, the digit which shows commonly radial loop is index finger. Here radial loop were found in other digits as well. This finding is very important.
- 2. I4 patterns frequency was statistically significantly reduced on right and left palms of Grand-Mal epilepsy males only.
- 3. Increased frequency of ridge dissociation was seen on both right and left palms of Grand-Mal epilepsy females only.

b) Quantitative traits

- 1. Mean 'atd' angle was found to have increased in both hands of epileptics males This means axial tri-radius 't' is displaced distally. 'atd' angle progressively increases assuming t',t' positions with severity of genetic abnormality.
- 2. 'a-b',' b-c',' c-d' ridge count on both hands of both the sexes in epileptics were reduced as compared to controls. This difference is statistically highly significant.

This means that either

- a. Distal part of palm is narrower in both males and females epileptic or
- **b.** The ridge intensity in the distal part of the palm is less. Or both.

In view of lack of published information on dermatoglyphics in grand mal epilepsy, observations of this investigation could not be appropriately discussed. It is felt that many more workers will come out with research work on this specific project and sufficient a data will accumulate, so as to predict proclivity of an individual to develop Grand mal epilepsy.

SUMMARY AND CONCLUSION

160 Grand Mal epileptic patients (80 Males, 80 females) from Neurology department Miraj Medical Center, Wanless Hospital Miraj, were selected for the present study. These patients were from age group 18 to 50 years identical number of healthy males and females, from any major illness were used as controls

From the observations it can be concluded that –

- 1. Presence of Radial loop/s found on finger other than index finger.
- 2. Increased 'atd' angle
- 3. Reduced a-b, b-c, c-d Ridge count/s either singly or together should make one think of possible Grand-Mal Epileptic triat.

However it must be mentioned that further studies in Dermatoglyphic Grand-Mal Epileptic are essential before one can draw such conclusion it is felt that many more workers will come out with research work on this specific type of epilepsy and sufficient data will accumulate so as to predict proclivity of an individual to develop Grand-Mal Epilepsy.

REFERENCES

- 1. Harrison's 15thEdition Principles of internal medicinVolume-2 Pag. 2356. Year2001.
- Kumar S.et.al Dermatoglyphic in healthy Indian children. Ind.j. Pediat: 1974; 41:249-256
- 3. Mulvihill J. J. and Smith D.W. The genesis of Dermatoglyphic J. of Pediat, 1969:75:579-589
- Bewick Thomas. 1753-1828. Cited by Cummin, H. and Midlo, Finger Prints Palm and Soles Page.8 Dover publications, New York 1961
- Grew Nebimaih 1684 Cited by Cummins, H. and Midlo, C. Fingerprints, Palms and Soles, Page.11 Dover publications, New York 1961.
- Bell, 1833. Cited by Cummins, H. and Midlo, C. Fingerprints, Palms and Soles, Pag.14 Dover publications, New York 1961.
- Whipple, Inez 1857 to 1929 Cited by Cummins, H. and Midlo, C. Fingerprints, Palms and Soles, Pag.21 Dover publications, New York 1961.
- 8. Galton, F. 1892. Cited by Cummins, H. and Midlo, C. Fingerprints, Palms and Soles, Pag.16 Dover publications, New York 1961.
- Wider, H.H. 1902 "Palms and Soles" Am. J. Anat. 1;
 423, 1902. Cited by Schaumann B. and Alter M. 1976 "
 Dermatoglyphic in medical disorders" Springer Verlag
 New York, Heidelberge, Berlin, Page. No. 11, 1976
- Essen- Moller, E. 1941"
 Empirische Annlichkeitsdiagnosebei Zwillingen"
 Hereditas, 27:1, 1941. Cited by Schaumann B. and Alter
 M. 1976. "Dermatoglyphic in medical disorders"
 Springer Verlag New York, Heidelberge, Berlin, Page. No. 719, 1976.
- Penrose, L.S. 1954. The distal tri- radius t on the hands of parents and sibs of mongolimbeciles" Ann. Hum. Genet 19:10, 1954. Cited by Schaumann, B. and Alter M. 1976 "Dermatoglyphic in medical disorders" Springer Verlag New York, Heidelberge, Berlin, Page.No. 7, 1976.
- 12. Fere (1905) Les empreints digital esdansplusiers groups des psychopaths. J. Anat. Physiol. (Paris) 41, 394-410.
- 13. Portius, W. 1937 UberAnomalien der Beugefurchenan den Handen von Geisteskranken. Erbarzt, 4, 80-83.

- Brown, M, Paskind, H.A. 1940. Consitutional difference between deteriorated and non deteriorated patients with epilepsy. III Dectylographic studies. J. Nerve. Ment. Dis., 92, 579-604.
- Katzenstein, Sutro E. 1945 Die Papillarmuster Von Epileptiker on OstschweizerischerherknftimVerleichmit denjenijen der gesuden Population, dargestelltimBimanur and Daktylogramm. Arch. Jul Klaus- Stift, 20,27-50.
- 16. Sivanandan, G., Sambasivan, M. 1974, Dernatoglyphics in Epilepsy. Phronesis, 19, 37-43.
- 17. BlankaSchaummn, and Assa. Mayersdorf. Dermatohlyphics in Epilepsy, Birth defect,: Original Article Services. Vol. XV. 6, 627-633.
- Kharitonov, R.A. Kozlova, A.I. Vuka, A.I. 1978.
 Dermatglyphics in children and adolescents suffering epilepsy. Zh- Neropatol- Psikhiatr., 4, 575-580.
- Schaumann, B., Johnson, S.B. and Jantz, R.L. 1982 Dermatoglyphic in seizure disorders. Prog-Clin – Biol Res., 84, 325-334.

- Ana TrarcaC.Barabolski The Journal of preventive medicine. 2002PG. 28-34
- PriyaRanganath, RN Kulkarni, R. Srinivasa epilepsy. Qualitative dermatoglyphic in idiopathic epilepsy. Annals of Ind. Acd. Of Nerology 2004; Vol. 7:319-321
- PriyaRanganath, RN Kulkarni, Rajangm S. Triradi of the palm in Idiopathic Epileps J. Anat. Soc. India 53(2) 22-24 (2004)
- 23. NandLal, R. K. Sureka. Dermatoglyphic patterns in epileptic patients J. Anat. Soc. India 2012; 61(1) 26-29
- UB Ghaffar¹, AK Singh² T H Faruqui² Dermatoglyphic patients of epilepsy Indian Journal of Forensic Medicine and toxicology 2013; Vol – No.2
- Vibute AM, WanjeShilpaKulkarni PR Dermatoglyphic markers in idiopathic epilepsy. In. J. of basic and Applied Medical Research 2013; Vol-2 P. 1002-1008.

Source of Support: None Declared Conflict of Interest: None Declared