Evaluation of two different doses of Dexmedetomidine in attenuation of pressor response during laryngoscopy and intubation

Shilpa Sale1*, Shama Shikalgar2, Prashant Lomate3, Ganesh Kumbhar4, Vikas Kumar5

1,5PG Student, 2Professor, 3Assistant Professor, 4Lecturer, Department of Anaesthesia, BVIMC Medical College and Hospital, Sangli, Maharashtra, INDIA.
Email: shilpasale@gmail.com

Abstract

Introduction: Pressor response to laryngoscopy and intubation have been associated with sympathetic and parasympathetic responses like Hypertension, Tachycardia due to increased plasma catecholamine concentrations. Premedication with Dexmedetomidine attenuates pressor response to laryngoscopy and intubation. Aims and Objective: to evaluate and compare effects of 2 different doses of Dexmedetomidine 1mcg/kg and 0.6mcg/kg in attenuating pressor response to laryngoscopy and intubation. Methods: 60 patients aged 18-50 years of either sex of ASA grade I and II scheduled for elective surgery were randomly divided into 2 groups. All patients were uniformly premedicated, 10 mins before induction. Group A received Inj Dexmedetomidine 1mcg/kg and Group B received Inj Dexmedetomidine 0.6mcg/kg iv. After induction with Thiopentone and succinylcholine, laryngoscopy and intubation was done. HR, SBP, DBP were recorded for both groups before premedication, 10min after premedication and 1min, 2min, 3min, 5min, 7min,10min after intubation. Data was analyzed and compared with paired t test. Results: HR and BP levels were lower at 10min after premedication and 5min after intubation than baseline levels in both groups. But in Dexmedetomidine 1mcg/kg group amount of increase in HR, SBP, DBP were lower compared to 0.6 mcg/kg. Conclusion: Dexmedetomidine 1mcg/kg is more effective than 0.6 mcg/kg in attenuating pressor response to laryngoscopy and intubation and provides more stable hemodynamic profile.

Keywords: Dexmedetomidine.

INTRODUCTION

The hemodynamic pressor responses to laryngeal and tracheal stimulation following laryngoscopy and tracheal intubation were described by Reid and Brace in 19401 and King et al in 1951. To date exact mechanism of hemodynamic responses to laryngoscopy and intubation have not been clarified but have been associated with both sympathetic2,3,4 and parasympathetic response5. These may include hypertension, Tachycardia due to increased plasma catecholamine concentrations4. It is usually well tolerated by healthy individuals, but even short lasting stimulation may be fatal in patient with hypertension, recent MI, preeclampsia, cerebrovascular diseases like tumor’s, aneurysms or intracranial hypertension2,5,6. Various attenuating agents for this response have been used including opioids, barbiturates, benzodiazepines, beta blockers, calcium channel blockers, vasodilators etc.7,8,9,10,11 Dexmedetomidine is the newer highly selective, specific and potent alpha 2 agonist having 8 times more affinity for alpha2 adrenoreceptors, shorter duration of action than clonidine and has an inhibitory effect on catecholamine release thereby decreasing their plasma level12,13,14,15. Dexmedetomidine has additional effects such as anxiolysis, sedation, analgesia and improved hemodynamic stability. Various studies have also documented that different doses of Dexmedetomidine can decrease the hemodynamic response to laryngoscopy and...
So that we decided to compare the two different doses of Dexmedetomidine - 1mcg/kg iv and 0.6mcg/kg iv to control hemodynamic responses due to laryngoscopy and intubation.

MATERIALS AND METHODS

After approval from ethical committee, the randomized prospective double blind study was carried out in tertiary referral medical college from December 2013.

Inclusion Criteria
- 60 patients belonging to
- Age group – 18 to 50 years
- ASA grade I and II
- Mallampatti grade I
- Elective surgical procedures under GA

Exclusion Criteria
- Patient refusal
- ASA grade III and IV
- Severely Hypovolemic
- Difficult airway
- History of cardiac disease and neurological disease

RESULTS

<table>
<thead>
<tr>
<th>Table 1: Demographic data</th>
<th>Age</th>
<th>No of patients</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>32.94</td>
<td>30</td>
<td>64.57</td>
</tr>
<tr>
<td>Group B</td>
<td>38.94</td>
<td>30</td>
<td>69.6</td>
</tr>
</tbody>
</table>

![Mean Age and Weight](image)

Figure 1: Mean Age and Weight

<table>
<thead>
<tr>
<th>Table 2: Changes in heart rate</th>
<th>HR (min)</th>
<th>10 min after pre med.</th>
<th>1 min after ETI</th>
<th>2 min after ETI</th>
<th>3 min after ETI</th>
<th>5 min after ETI</th>
<th>7 min after ETI</th>
<th>10 min after ETI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Mean</td>
<td>84.4</td>
<td>67.47*</td>
<td>80*</td>
<td>80.87*</td>
<td>79.8*</td>
<td>75.34*</td>
<td>73.6*</td>
</tr>
<tr>
<td>±SD</td>
<td>8.76</td>
<td>6.20*</td>
<td>10.45*</td>
<td>8.80*</td>
<td>7.31*</td>
<td>5.59*</td>
<td>6.07*</td>
<td>7.43*</td>
</tr>
<tr>
<td>Group B</td>
<td>Mean</td>
<td>81.47</td>
<td>78.8*</td>
<td>90.94*</td>
<td>94.6*</td>
<td>93.74*</td>
<td>90.54*</td>
<td>88*</td>
</tr>
<tr>
<td>±SD</td>
<td>7.14</td>
<td>7.49*</td>
<td>6.64*</td>
<td>6.72*</td>
<td>7.44*</td>
<td>7.97*</td>
<td>8.36*</td>
<td>7.34*</td>
</tr>
</tbody>
</table>

Highly Significant

HR increased in both groups immediately after endotracheal intubation. But rise in HR 2min after endotracheal intubation is more in Group B compared to group A.
SBP increased in both groups immediately after endotracheal intubation. But rise in SBP 2 min after endotracheal intubation is more in Group B than Group A.

Table 4: Changes in diastolic blood pressure

<table>
<thead>
<tr>
<th>DBP (mmHg)</th>
<th>Base line</th>
<th>10 min after pre med.</th>
<th>1 min after ETI</th>
<th>2 min after ETI</th>
<th>3 min after ETI</th>
<th>5 min after ETI</th>
<th>7 min after ETI</th>
<th>10 min after ETI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Mean</td>
<td>81.87</td>
<td>69*</td>
<td>79.8</td>
<td>77.86</td>
<td>74.67*</td>
<td>71.27*</td>
<td>68.67*</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>6.19</td>
<td>5.38*</td>
<td>10.03</td>
<td>11.64</td>
<td>11.10*</td>
<td>9.38*</td>
<td>5.38*</td>
</tr>
<tr>
<td>Group B</td>
<td>Mean</td>
<td>82.33</td>
<td>73.40*</td>
<td>76.07</td>
<td>81.07</td>
<td>79.47*</td>
<td>76.33*</td>
<td>73.73*</td>
</tr>
<tr>
<td></td>
<td>±SD</td>
<td>3.36</td>
<td>7.44</td>
<td>6.07</td>
<td>5.54</td>
<td>3.93*</td>
<td>3.14*</td>
<td>3.55*</td>
</tr>
</tbody>
</table>

DBP increased in both groups immediately after endotracheal intubation. But rise in DBP 3 min after endotracheal intubation is more in Group B than Group A.
DISCUSSION
Laryngoscopy and endotracheal intubation results in transient, but marked sympathetic and sympathoadrenal response. In patients with hypertension, Ischemic Heart Disease, cerebrovascular disease and intracranial aneurysms it can result in harmful consequences like left ventricular failure, pulmonary edema, myocardial infarction, ventricular dysarrhythmias and cerebral hemorrhage. It is for these reasons various studies had been carried out to search effective drug to attenuate this Hemodynamic response. Role of Dexmedetomidine as an analgesic, sedative, anxiolytic, sympatholytic and blunting agent for increased hemodynamic responses is being extensively studied. These responses are mediated by activation of alpha 2 receptors which are involved in regulating autonomic and cardiovascular systems. Alpha 2 receptors are located on blood vessels mediate vasoconstriction and on sympathetic terminals inhibit release of catecholamines. Alpha 2 receptors are also located within the postsynaptic terminals in central nervous system, their activation result in sedation, decreased neuronal activity and augmentation of vagal activity. Our study was conducted to compare the efficacy of i.v. Dexmedetomidine 1mcg/kg with Dexmedetomidine 0.6mcg/kg to attenuate pressor response to laryngoscopy and intubation. Our study was carried out in 60 patients of ASA grade 1 and 2 who were divided in 2 groups of 30 each. The group A was given inj Dexmedetomidine 1mcg/kg and group B was given inj Dexmedetomidine 0.6 mcg/kg 10 minutes before laryngoscopy and intubation. Hemodynamic parameters like heart rate, systolic blood pressure, diastolic blood pressure were measured at different time intervals in each patient. We found that both groups of Dexmedetomidine showed attenuated pressor response to Laryngoscopy and endotracheal intubation. Different studies with different doses of Dexmedetomidine like 0.5 mcg/kg, 0.6mcg/kg, 0.75mcg/kg, 1 mcg/kg have been done to attenuate pressor response to intubation. So we decided to evaluate and compare efficacy of two different doses of Dexmedetomidine i.e. 1mcg/kg and 0.6mcg/kg. It was found in the study by Scheinin’s et al that Dexmedetomidine 0.6mcg/kg attenuated hemodynamic response to intubation and required dose of thiopentone is significantly lower. Jaakola et al concluded that, during the intubation blood pressure and heart rate is significantly reduced by 0.6 μg. kg⁻¹ dexmedetomidine. Yildiz et al found that a single dose of 1mcg/kg dexmedetomidine prevented cardiovascular hemodynamic response and decreased need for additional opioid during laryngoscopy and endotracheal intubation in elective minor surgery patients. Ozkose et al administered a single dose of 1mcg/kg Dexmedetomidine 10 min before induction. They reported that with control measurements, mean arterial pressures decreased up to 20% and heart rate is decreased up to 15% 1min and 3 min following intubation. In the other study which was done by Tezer et al. it is concluded that sympathetic responses during laryngoscopy and intubation were effectively reduced by dexmedetomidine 1 μg.kg⁻¹h⁻¹ and esmolol 250 μg/kg/min. Khan et al. demonstrated that heart rate, systolic and diastolic blood pressure were reduced by dexmedetomidine. In another study on the patients undergoing vascular surgery, it was observed that in the recovery period dexmedetomidine infusion led to suppression on heart rate and plasma catecholamine levels. Jaaokola et al, R saraf et al, B. scheinin et al, Tezer et al concluded in their study that

Figure 4: The increase was highly significant in Group B compared to Group A during laryngoscopy and intubation.
Dexmedetomidine 0.6 mcg/kg significantly reduced blood pressure and Heart rate during intubation. On the other hand, Yildiz et al15, Ozkose et al31, Aho et al18 Sukhminderjit Singh Bajwa et al29 in their studies concluded that sympathetic response during intubation effectively reduced by Dexmedetomidine 1mcg/kg which is comparable to our study. In this study in both groups, Heart rate, Systolic blood pressure, Diastolic blood pressure started decreasing up to 10min after premedication with study drug in respective group. These observations are comparable to those by Sukhminderjit Singh Bajwa et al29. B. Scheinin et al16. We observed decrease of HR, SBP, DBP in Dexmedetomidine 1mcg/kg group is more than Dexmedetomidine 0.6 mcg/kg. In both groups HR, SBP, DBP increased after laryngoscopy and intubation. The peak increase in HR, SBP, DBP was seen at 1min after intubation. However increase in HR, SBP, DBP is less in group Dexmedetomidine 1mcg/kg as compared to Dexmedetomidine 0.6 mcg/kg. This increase was highly significant. No adverse cardiovascular effects from drug were seen in the present study. Bradycardia (HR<50/min), a possible consequence of administration of alpha 2 agonist, was counteracted by Atropine 0.6mg iv. Also no adverse effects like nausea, vomiting, respiratory depression, apnea, muscle rigidity were seen.

CONCLUSION
Both Dexmedetomidine 1mcg/kg and 0.6 mcg/kg attenuate pressor response to laryngoscopy and endotracheal intubation. But Dexmedetomidine at dose of 1mcg/kg is more effective than 0.6 mcg/kg in attenuating pressor response and provides more stable hemodynamic profile.

REFERENCES
1. Reid LC, Brace DE. Irritation of the respiratory tract and its reflex effect upon heart surg Gynec and Obst 1940; 70: 157-62

Source of Support: None Declared
Conflict of Interest: None Declared