INTRODUCTION
Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency is most common of all clinically significant enzyme defects. This deficiency is X-linked which occurs due to mutations in coding region of G-6-PD gene. Almost all of the 140 different mutations known are single missense point mutations. Exact incidence not known but several studies have reported incidence between 1-20%. G-6-PD catalyzes first step in HMP shunt. NADPH produced catalyzes first step in HMP shunt. NADPH produced

Raviraj Naik1,2, Sarita Dakhure2, Rittu Chandel3, Leela Abichandani4
1,2Assistant Professor, Department of Biochemistry, IIMSR, Warudi, Jalna, Maharashtra, INDIA.
3Assistant Professor, Department of Biochemistry, Dr. SGGS Medical College, Nanded, Maharashtra, INDIA.
4Professor and Head, Department of Biochemistry, Grant Medical College, Mumbai, Maharashtra, INDIA.
Email: raviraj_40@yahoo.com

Abstract
Introduction: Glucose – 6 – phosphate dehydrogenase (G-6-PD) is an enzyme that participates in the first step of Hexose monophosphate pathway of glucose metabolism. Deficiency of this enzyme is most common genetic disorder in India. Its deficiency causes hemolysis which eventually lead to acute haemolytic anemia and neonatal jaundice. The hemolysis in these deficient patients are triggered by bacterial, viral infections, drugs like aspirin and chloroquine, foods like fava beans Period from after birth to first 4 weeks is the neonatal period and the child is called a neonate. There is no cure for G-6-PD. Early detection and prevention of hemolytic episodes by avoiding the triggers is the only cure for this deficiency. Aim: To screen the neonates for glucose –6-Phosphate dehydrogenase deficiency so as to prevent the morbidity and mortality occurring due to this deficiency. Material and Methods: One Thousand neonatal blood sample were obtained from the Labour room, of the civil Hospital of vasai. The samples were analysed by Dye Decolourization method. Results: Of the 1000 samples, 10 was found to be G-6- PD deficient and 20 were found to be G-6-PD deficiency carriers. Conclusion: G-6-PD deficiency is common in Adivasi Population. G-6-PD deficiency testing should be done as a screening procedure at least in Adivasi residing areas as early diagnosis and prevention is the only way of treating this deficiency disorder and avoiding its complications. Key-words: Glucose – 6 – phosphate dehydrogenase (G-6-PD), deficiency, neonate, hemolysis, screening.

Access this article online
Quick Response Code:
Website: www.statperson.com
DOI: 01 August 2015

MATERIAL AND METHODS
Site of collection of blood sample: From the labour room of rural hospital vasai, one thousand neonatal cord blood samples were collected in ethylene diamine tetracetic acid (EDTA) bulb. These samples were then analysed in the laboratory of Biochemistry department at GGMc, Mumbai; by the Dye decolorization method(Quantitative).

Principle: G-6-PD present in red cell haemolysate act on glucose-6-phosphate and reduces NADP to NADPH which with the help of PMS reduces blue coloured 2,6
Dichlorophenol Indophenol into colorless form. Rate of decolorization is proportional to enzyme activity. Reaction can be represented as : -
1]Glucose-6-phosphate + NADP --------> 6-Phosphogluconic acid + NADPH.
2]NADPH + 2,6-Dichlorophenolindophenol --------> NADP + Reduced 2,6-Dichlorophenolindophenol.

INTERPRETATION :- Time taken for colour change from initial deep blue to reddish purple is noted.
- Follow up to a maximum of 6 hours with 30 minute interval.
- Decolourization Time :- 1} Normal subjects : 30 -60 minutes.
2} G-6-PD deficient subjects : 140min - 24 hrs.
3} G-6-PD carriers :- 90 min.

OBSERVATION AND RESULTS
Total number of samples collected and examined = 1000.
Out of 1000 samples :- 10 sample was found to be G-6-PD deficient.{male newborn}
:-20 samples were found to be G-6-PD carriers.{female newborn}
:-970 samples had normal G-6-PD levels.

DISCUSSION
The gene for G-6-PD deficiency is located on terminal region of the long arm of the X-chromosome at position q28. It is a X-linked condition which usually manifest in males carrying mutant gene. The phenotype in females may be normal homozygote, G-6-PD deficient homozygote or heterozygous. Random X -chromosome inactivation result in two RBC populations in female heterozygotes. Several variants of G-6-PD deficiency were encountered in different regions of India during extensive screening programmes. Different groups of researchers have evaluated the scope of G-6-PD deficiency in different regions of country. WHO has quoted the incidence of G-6-PD deficiency in India from 0.2-19%. In other studies e.g; Deshmukh et al. study and Nishi Madan et al. study incidence of G-6-PD deficiency was 6% and 1.37% respectively. Various incidences of G-6-PD deficiency in various subjects may be due to differences in Screening test solution and associated incidence of Malaria and Haemoglobinopathies in various regions. Calculating the sensitivity and specificity of this screening method is out of scope of this study, but based on previous reports the neonatal cord blood G-6-PD deficiency screening had acceptable sensitivity{85.7} and high specificity{98.1%}.

CONCLUSION
The early characterization of G-6-PD deficiency provides an etiological diagnosis for neonatal jaundice, as well as the opportunity to give the newborn’s family information concerning the prevention of complications and mortality associated with G-6-PD deficiency. Considering its high incidence in our country, a neonatal screening programme for G-6-PD deficiency should therefore be taken into account in the National Health Schemes.

REFERENCES

Source of Support: None Declared
Conflict of Interest: None Declared