# Histogenesis of Endodermal Component of Human Fetal Thymus

Bashir Khan<sup>1\*</sup>, Vinaram Rukhmode<sup>2</sup>, Sanobar Shaikh<sup>3</sup>, Chhaya Diwan<sup>4</sup>

<sup>1</sup>Assistant Professor, <sup>2</sup>Professor and HOD, Department of Anatomy, Shri Bhausaheb Hire Government Medical College, Dhule, Maharashtra,

INDIA.

<sup>3</sup>Associate Professor, <sup>4</sup>Professor, Department of Anatomy, Government Medical College, Aurangabad, Maharashtra, INDIA.

\*Corresponding Address:

drbashirkhan@gmail.com

## **Research Article**

Abstract: The present study is conducted to observe the early cellular events and histological maturity endodermal component of thymus. After ethical approval from institutional ethics committee 53 human fetuses were obtained from department of Obstetrics and Gynaecology with permission of head of department and written informed consent from respective parents. The gestational age was determined by menstrual history and Crown Rump length (CRL). The specimen were dissected through parasternal incision and processed in paraffin. The sections were taken by rotary microtome. The slides were stained by Haematoxylin and eosin and Periodic acid-Schiff (PAS) stains. Endoderm of thymus differentiate into epithelial cells which from cytoreticulum and Hassall's corpuscles in medulla. Epithelial cells are first observed at 10<sup>th</sup> week. Hassall's corpuscles appeared PAS positive. They are first observed at 12<sup>th</sup> week and increased in size and number with increase in gestational age.

Keywords: Thymus, Epithelial cells, Cytoreticulum, Hassall's corpuscles,

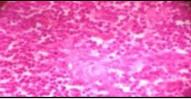
#### Introduction

The differentiation implies to increase in the structural complexities. Tissue differentiation culminates in the assumption of coordinated functional activities. The total process by which cells differentiate into distinctive kinds and assume specific tissue characters is known as histogenesis[1]. The endoderm in thymus differentiates to form epithelial tubes that proliferate and give rise to side branches which become the core of a lobule. Some epithelial cells spread apart but retain connection with each other to form the epithelial reticulum while other gets arranged around a central point to form the Hassal's corpuscles [2]. Although during the ensuing decades, the myriad complexities of the thymus and the thymocytes development have been intensively investigated, it is often true that the more one knows about a topic, the more one realizes that how much is still to be learnt. The details of microscopic development of the thymus are not studied to great extent in the human fetuses and most of our knowledge regarding early fetal histology of this organ is based on the studies in different animals. Secondly, the histological details of the different cellular

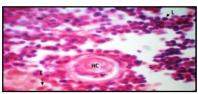
components of the gland in the early developmental stages can be observed to a better advantage than in the adults, due to less crowding of the lymphocytes and no infiltration of fat. The epithelial character of the cells of cytoreticulum and concentric Hassal's corpuscles is more obvious in fetal life [3]. The present study, therefore, has been undertaken to observe the early cellular events in the different stages of human fetal period, and an attempt has been made to note the degree of histological and functional maturity attained by this important gland of immune system.

#### **Materials and Methods**

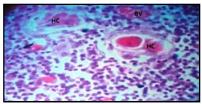
The study was conducted in department of anatomy, Government medical college, Aurangabad during 2006 to 2009. After ethical approval from institutional ethics committee, 53 human fetuses (24 male and 29 female) of different age groups ranging from 9th to 40<sup>th</sup> weeks of gestation were procured from the department of Obstetrics and Gynecology of Government medical college and hospital, Aurangabad for research work with due permission from the Professor and Head of the Department and consent from respective parents. Only fetuses free from detectable abnormality belonging to the mother with normal obstetrical history were taken into the study. These specimens included the spontaneous abortuses, still born and terminated fetuses under the Medical Termination of Pregnancy Act of India 1971. Twins and fetuses with gross anomalies were omitted.


Fetuses were obtained within 4-5 hrs of birth to avoid post-mortem changes and immediately fixed in 10% formalin. Gestational age of fetus was calculated from first day of last menstrual period (LMP). Fertilization age was obtained by subtracting two weeks from gestational age. Fertilization age was also determined from Crown Rump Length of fetus and using table in the Moore and Persaud[2]. The sternoclavicular joints were disarticulated and costal cartilages were cut. Thus the entire thoracic cavity was open and lower part of neck was also dissected for complete exposure of thymus in its natural location. The tissue sample was fixed in Bouins's fluid, processed to prepare paraffin embedded blocks and 4-5 micron thick sections were cut. The slides were stained with Haematoxylin & Eosin (H &E) and Periodic acid Schiff (PAS) stains and were studied under light microscope.

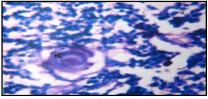
#### Results


Epithelial cells are visible at 10<sup>th</sup> week. They are irregular in shape with many processes which extend among the lymphocytes. They are much larger and possess abundance of the cytoplasm as compared to lymphocytes. Their cytoplasmic processes are joined by processes of neighbouring cells to form cytoreticulum.

At  $12^{th}$  week Hassal's corpuscles are visible in the medulla as concentrically arranged epithelial cells with central eosinophilic mass. They maximum growth is observed between  $18^{th}$  to  $24^{th}$  weeks. They gradually increased in number and size with increase in the gestational age.


They give PAS positive reaction with Periodic Shiff's stain.




**Photograph 1:** Thymus (16 weeks) Stained by Haematoxylin and Eosin Stain showing Hassall's Corpuscle



*Photograph 2:* Thymus (18 weeks) Stained by Haematoxylin and Eosin Stain showing Hassall's Corpuscle (HC), Epithelial cell (E) and Lymphocyte (L).



**Photograph 3:** Thymus (24 weeks) Stained by Haematoxylin and Eosin Stain showing Hassall's Corpuscle (HC) and Blood Vessel (BV).



*Photograph 4:* Thymus (24 weeks) Stained by Periodic acid Schiff Stain showing Hassall's Corpuscle (HC)

## Discussions

The endoderm in thymus differentiates to form epithelial cells which spread apart but retain connection with each other to form the epithelial reticulum while other get arranged around a central point to form the Hassal's corpuscles[1].

#### 1) Epithelial cells

The epithelial reticular cells, together with the lymphocytes constitute the thymic parenchyma. They are derived from endoderm of the third pair of pharyngeal pouches. These are stellate in shape bearing many digitiform processes which extend among the lymphocytes. Their cell bodies are irregular and much larger in size than the lymphocytes. The predominance of euchromatin gives the nuclei a vesicular appearance under the light microscope. The epithelial cells possess abundance of cytoplasm as compared to the lymphocytes. They are arranged to form an extensive, tridimensional cellular reticulum (cytoreticulum). Although more compact in the medullary region, this network of epithelial cells is distributed throughout the thymic lobule[4].

In the present study, the epithelial cells are observed at  $10^{\text{th}}$  week.

Standring S *et al.* (2008)[3]and Hamilton and Mossman (1976)[5] mentioned the presence of epithelial cells at 8<sup>th</sup> week.

Ajita *et al.* (2006) observed the epithelial cells at  $9^{\text{th}}$  week[6].

Hayward (1972)[7] and Arey (1956)[1] reported that the epithelial component of the thymus was recognized at  $10^{th}$  week.

Von Gaudecker and Muller-Hermelink *et al.* (1980) stated that at  $8^{th}$  week, the primordium of the thymus contained almost exclusively of undifferentiated epithelial cells. At  $10^{th}$  week, the epithelial cells in the central part were spindle shaped[8].

#### 2) Hassal's corpuscles:

The medulla contains Hassal's corpuscles which are concentrically arranged nests of epitheloid cells varying in size from 25-75 micron. The central cells show granular degeneration. The concentric corpuscles of Hassal are first formed in the fetal life and are then continuously formed throughout the life of the thymus. They increase in the size and number during the periods of intense lympholysis[3].

#### a) Time of appearance:

In the present study the Hassal's corpuscle is first observed at 12<sup>th</sup> week of gestation.

There are different reports on the time of appearance of the Hassal's corpuscles.

-As early as 8<sup>th</sup> week by Fawcett (1994)[9],

-at 9<sup>th</sup> week by Gilhus *et al.* (1985)[10],

-at 10<sup>th</sup> week by Standring S et al. (2008)[3] and Arey (1956)[1],

-at 11<sup>th</sup> week by Ghali *et al.* (1980)[11], -at 12<sup>th</sup> week by Sawant (2003)[12],

-at the end of 3<sup>rd</sup> month by Baxter JS (1953)[13],

-at 15<sup>th</sup> week by Ajita *et al.* (2006)[6],

-between 15<sup>th</sup> and 16<sup>th</sup> week by Lobach and Havnes (1987)[14]

## b) Growth:

In the present study, size and number of Hassal's corpuscle is increased in 18<sup>th</sup> to 24<sup>th</sup> weeks.

Bodey and Kaiser (1997) reported that the development of the first Hassal's corpuscle occured during the second part of the third intrauterine lunar month in human fetuses but the greatest development of Hassal's corpuscles was observed between 6<sup>th</sup> and 10<sup>th</sup> lunar months[15].

Liberti et al. (1994) mentioned that the mean area of Hassal's corpuscle was increased with the fetal age, with greatest difference observed between 16<sup>th</sup>-19<sup>th</sup> week and  $20^{\text{th}}-23^{\text{rd}}$  week[16].

Ajita et al. (2006) observed that Hassal's corpuscle increased in number and size during  $17^{\text{th}}$  to  $24^{\text{th}}$  week[6].

# c) Periodic acid-Schiff (PAS) positivity:

In the present study, Hassal's corpuscles appear to be PAS positive

Bodey B et al. (1987) reported diffuse PAS positivity of Hassal's corpuscles[17]

Bodey and Kaiser (1997) detected histochemically a rich content of basic non histone protein and PAS positive substances (Glycogen and acid mucopolysaccharides) within the corpuscles[15]

#### Conclusion

The endoderm in thymus differentiates to form epithelial cells which spread apart but retain connection with each other to form the epithelial reticulum while other get arranged around a central point to form the Hassal's corpuscles. Epithelial cells, in the present study, are observed at 10<sup>th</sup> week. Hassall's corpuscles appeared PAS positive. They are first visible at 12<sup>th</sup> week. Maximum growth is observed between 18<sup>th</sup> to 24<sup>th</sup> weeks, thereafter they increase in size and number with increase in gestational age. The findings of the present study are

comparable with the findings of standard text books and previous workers.

#### **Conflict of Interest**

Conflict of interest declared none.

#### References

- 1. Arey LB. Developmental anatomy. 6<sup>th</sup> ed. Philadelphia and London: WB Saunders company: 21-23, 234-236, 1956
- Moore KL, Persaud TVN. The developing human. 8<sup>th</sup> ed. 2. Philadelphia: Saunders Elsevier.: 96-167, 2008
- Standring S, Borely NR, Collins P, Crossman AR, 3. Gatzzoulis MA, Healy JC, Johnson D, Mahadevan V, Newell RLM, Wigley CB. Gray's Anatomy; 40th ed.; Chrchill Livingstone Elsevier:945-949, 2008
- Savino w, Lemos G. Histophysiology of thymic epithelial 4. reticular cells: Arch. histol. jap., Vol. 45, No. 2. 139-144, (1982)
- Hamilton WJ and Mossman HW: Hamilton, Boyd and 5. Mossman's Human embryology. 4<sup>th</sup> ed London; The Macmillan Press Ltd.: 291-376, 1976
- Ajita RK, Singh TN, Singh YI and Singh LC. An insight 6 into the structure of the thymus in human foetus - a histological approach. Journal of Anatomical society of India; 55(1): 45-49, 2006
- 7. Hayward AR. Myoid cells in the human fetal thymus. J. Path;. 106:45-48. 1972.
- 8. Von Gaudecker B, Muller-Hermelink HK. Ontogeny and organization of the stationary non-lymphoid cells in the human thymus. Cell Tissue Res.;207(2):287-306, 1980
- Fawcett DW: A Text Book of Histology In: Thymus 12th 9. ed. London: Chapman and Hall:432-434, 1994.
- 10. Glihus NE, Matre R and Tonder O. Hassal's corpuscles in the thymus of foetuses, infants and children: immunological and histochemical aspects. Thymus;7(2):123-135, 1985.
- 11. Ghali WM, Abdel-Rahman S, Nagib M and Mahran ZY. Intrinsic innervations and vasculature of pre-and post natal human thymus. Acta Anat 108:115-123, 1980.
- 12. Sawant SP. Development of thymus. Abstract in: Journal Of Anatomical society of India: vol. 52 (1); 2003.
- 13. Baxter JS.Frazers manual of embryology. 3rd edition, Bailliere Tindall and Cox. London,:244, 1956
- 14. Lobach DF and Haynes BF: Ontogeny of the human thymus during fetal development.J. of clinical immunol; (7):81-97, 1987.
- 15. Bodey B, Kaiser HE. Development of the Hassal's bodies of the thymus in humans and other vertebrates (especially mammals) under physiological and pathological conditions: immunocytochemical, electronmicroscopic and in vitro observations. In Vivo. Jan-Feb;11(1):61-85, 1997.
- 16. Liberti EA, Fagundas TP, Perito MA, Matson E, Konig Junior B. On the size oh Hassal's corpuscles in human foetuses. Bull Assoc Anat (Nancy). Sep;78(242):15-8, 1994
- 17. Bodey B, Calvo W, Prummer O, Fliender TM, Borysenko M. Development histogenesis of the thymus in dog. A light and electron microscopical study. Dev Comp Immunol, Winter;11(1):227-238, 1987.