Phenylarsenic(III) Derivatives of Schiff Bases; Synthesis and Characterization

Rita Gupta1*, Jyoti Sharma1, Mudit Kumar Gupta2, YashPal Singh1

1Department of Chemistry, University of Rajasthan, Jaipur-302 004, Rajasthan, INDIA.
2L. B. S. College, Jaipur, Rajasthan, INDIA.

Corresponding Address
ritagupta16@rediffmail.com

Research Article

Abstract: Complexes having the general formula Ph As [OC (R) CHC(R') NC]+nNa [where n=1 or 2; R=R' =CH3, C6H5; R=CH3, R'=C6H5] have been synthesized by the reactions of phenyl arsenic(III) dichloride with the sodium salts of [RC(O) CHC (R') N(C6H5)] Na+ in 1:1 and 1:2 molar ratios in anhydrous benzene. These compounds have been characterized by elemental analyses; molecular weight determinations and their tentative structure have been proposed on the basis of spectral (I.R. 1H and 13C NMR) studies.

Key words: Phenylarsenic(III) dichloride, elemental analyses, spectral studies, Pseudo octahedral and Trigonal bipyramidal geometry.

Introduction

Arsenic in both form i.e. organic & inorganic, is of great interest today due to their wide occurrence in the environment & its health impact[1]. Arsenic compounds are used as effective antibacterial drugs[2],[3] to treat a variety of diseases including syphilis & cancer[4]. Organoarsenic compounds are also known to possess significant biological activity[5]-[7]. Interest in the chemistry of these compounds is growing continuously because of structural variations[8],[9] synthetic challenges & wide ranging applications in biological activities[10]-[12]. The trivalent compounds of organoarsenic show considerable structural diversity which is extended by the presence of a stereo chemically active lone pair of electrons[8]. The geometry can also be influenced by the presence of lone pair of electrons[13] which may be either stereo chemically active or inactive & also by subtle change in the nature of groups attached to metal atom. In continuation of our previous work on some mixed ligand derivatives of phenyl arsenic (III) [14] & organoantimony (III) & (V) derivatives of Schiff bases, we report here the synthesis & characterization of phenyl arsenic (III) derivatives of Schiff bases.

Materials and Methods:

All the reactions were carried out under anhydrous conditions and solvents were dried by standard procedure. Phenylarsenic(III) dichloride(15) and Schiff bases[16] were synthesized from reagent grade chemicals by reported methods. The elements arsenic nitrogen and chlorine were estimated[17] by standard methods. I.R. spectra of these compounds have been recorded as nujol mull using KBr cells on FTIR spectrophotometer model 8400 s shimadzu in the range of 4000-400 cm⁻¹. The NMR 1H and 13C spectra have been recorded on JEOL FTAL300NMR spectrometer at 300MHz. Molecular weight of these complexes were determined cryoscopically using Beckmann’s thermometer. Since similar methods have been used to synthesize these compounds, the preparative detail of one representative compound is given in detail. Synthetic and analytical data of the other analogous compounds are summarized in Table-1.

Synthesis of PhAs[OC(CH3)CHC(CH3)NC6H5]2

A benzene solution of CH3C(O)CHC(CH3)N(C6H5)H (0.81gm 4.62mM) was added to the sodium methoxide solution obtained by the interaction of sodium(0.10gm 4.34Mm) with methanol and the reaction was refluxed for about 3 hours. The benzene solution of PhAsCl2 (0.48gm 2.15mM) was added to the above reaction mixture after cooling. The reaction mixture was refluxed for about 4 hours and the precipitated NaCl was filtered off. The removal of volatile component from the filtrate under reduced pressure yield a dark brown viscous liquid, which was purified by benzene n-hexane mixture.

Results and discussion

The interaction of phenyl arsenic(III) dichloride with sodium salts of Schiff base in benzene solution in 1:1 & 1:2 molar ratios, respectively leads to the formation of the corresponding phenyl arsenic (III) derivatives.

Ph AsCl2 +n[RC(O)CHC(N)C6H5RNa]---->Ph As[OC(R)CHC(N)C6H5R']nCl2-n + nNaCl
R=R'=CH3, C6H5; R=CH3, R'=C6H5;
where n=1 or 2

Precipitated sodium chloride was filtered off and the solvent removed under reduced pressure yield dark brown viscous liquids. These derivatives are soluble in common organic solvents and are purified by benzene n-hexane.
mixture. The molecular weight determinations indicate the monomeric nature of these compounds.

I.R. Spectra

The appearance of a new band in the range 405-413 cm\(^{-1}\) (\(\nu_{\text{As-N}}\))[18] indicates the NH deprotonation and the formation of an arsenic - nitrogen bond. The intense absorption bands observed in the spectra of the free ligand in the region 1600-1610cm\(^{-1}\) (\(\nu_{\text{C=N}}\)) and 1560-1570cm\(^{-1}\) (\(\nu_{\text{C=O}}\)) are shifted to lower wave number in the spectra of their corresponding phenyl arsenic(III) compounds. This indicates the involvement of these groups in the bonding. The presence of another band in the region 520-535 cm\(^{-1}\) due to \(\nu_{\text{As-O}}\)[19] confirmed the chelation.

\(^1\)H NMR Spectra

Absence of NH/OH signal from the spectra of complexes (Table-2) indicates the complexation of arsenic with Schiff base through As-N bond. A small downfield shift in the position of methyl and methine proton signal may be due to the delocalization[20] of electron is in quasiaromatic chelate ring. The phenyl protons are observed as complex pattern in the range 7.10-8.42 ppm.

\(^{13}\)C NMR Spectra

\(^{13}\)C NMR spectra of the complexes (Table-3) confirm the delocalization of electrons in the chelate ring, which is indicated by the small downfield shift in the position of CH\(_3\),CH,C=O and C=N carbon as compared to their position in the corresponding ligands. The signals for phenyl carbons were observed in the range 128.2-151.8ppm. The corrected chemical shift value (\(\delta\)) and Hammettaft constant (\(\sigma^R_0\))[21] are found to be negative in the range -1.6 to -3.0ppm and -.06 to -.15 ppm, respectively. Negative values of \(\delta\) as well as \(\sigma^R_0\) indicate \(\text{dr-\pi}\) conjugation with poor electron shift from arsenic to phenyl group in these complexes.

Conclusion

In view of the monomeric nature of these complexes and of the bidentate behaviour of the ligand, the following structure is being proposed in which the central arsenic atom acquires a pseudooctahedral geometry:

![Pseudooctahedral structure](image)

In view of the presence of a bidentate ligand, a chloro group, phenyl group in the chloroderivatives of phenylarsenic(III), keeping in mind bent rule the following structure may be proposed in which arsenic atom acquires trigonalbipyramidal geometry:

![Trigonalbipyramidal structure](image)

Acknowledgement

Dr. Rita Gupta is thankful to the HOD, Chemistry Univ. of Raj. Jaipur for providing necessary facilities for research work and U.G.C. New Delhi for granting the Research Award.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Reactants (gm)</th>
<th>Molecular Formula</th>
<th>% Analysis Found(calcd)</th>
<th>Mol wt found (Calcd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Na</td>
<td>LH</td>
<td>Physical state & (yield%)</td>
<td>As</td>
</tr>
<tr>
<td>1.</td>
<td>0.10</td>
<td>R=R'=CH(_3) 0.81</td>
<td>Ph AsCl(_2) Brown Viscous(83)</td>
<td>14.23 (15.0)</td>
</tr>
<tr>
<td>2.</td>
<td>0.08</td>
<td>0.65</td>
<td>PhAsLCl(_2)C(_6)H(_5)AsNOCl Yellow solid (85)</td>
<td>19.32 (20.74)</td>
</tr>
<tr>
<td>3.</td>
<td>0.11</td>
<td>R=R'=C(_6)H(_3) 1.41</td>
<td>PhAsLCl(_2)C(_6)H(_5)AsNOCl Brown sticky(80)</td>
<td>9.30 (10.02)</td>
</tr>
<tr>
<td>4.</td>
<td>0.08</td>
<td>1.02</td>
<td>PhAsLCl(_2)C(_6)H(_5)AsNOCl Brown solid(82)</td>
<td>14.32 (15.44)</td>
</tr>
<tr>
<td>5.</td>
<td>0.09</td>
<td>R=CH(_3);R'=C(_6)H(_5) 0.92</td>
<td>PhAsLCl(_2)C(_6)H(_5)AsNOCl Yellow Viscous(85)</td>
<td>11.32 (12.00)</td>
</tr>
<tr>
<td>6.</td>
<td>0.07</td>
<td>0.72</td>
<td>PhAsLCl(_2)C(_6)H(_5)AsNOCl Yellow solid (80)</td>
<td>17.00 (17.69)</td>
</tr>
</tbody>
</table>

Table 1: Synthetic & Analytical data of phenylarsenic (III) complexes of Schiff bases
Table 2: 1H NMR data (in DMSO-d6) of phenylarsenic (III) complexes of Schiff bases

<table>
<thead>
<tr>
<th>S.No</th>
<th>Complexes</th>
<th>CH</th>
<th>CH$_3$</th>
<th>Phenyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a,bPh As[OC(CH$_3$)$_2$CHC(CH$_3$)$_2$NC$_6$H$_5$]</td>
<td>5.05(s)</td>
<td>a,2.01(s)</td>
<td>7.10-7.91(m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.96(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a,bPh As[OC(CH$_3$)$_2$CHC(CH$_3$)$_2$NC$_6$H$_5$]Cl</td>
<td>5.05(s)</td>
<td>a,2.05(s)</td>
<td>7.28-7.77(m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.87(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ph As[OC(C$_6$H$_5$)CHC(C$_6$H$_5$)NC$_6$H$_5$]</td>
<td>5.82(s)</td>
<td>-</td>
<td>7.28-7.40(m)</td>
</tr>
<tr>
<td>4</td>
<td>Ph As[OC(C$_6$H$_5$)CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>5.62(s)</td>
<td>-</td>
<td>7.20-8.42(m)</td>
</tr>
<tr>
<td>5</td>
<td>Ph As[OC(CH$_3$)$_2$CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>4.98(s)</td>
<td>2.01(s)</td>
<td>7.28-7.78(m)</td>
</tr>
<tr>
<td>6</td>
<td>Ph As[OC(CH$_3$)$_2$CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>5.06(s)</td>
<td>2.12(s)</td>
<td>7.14-7.77(m)</td>
</tr>
</tbody>
</table>

Table 3: 13C NMR data (in CHCl$_3$) of phenylarsenic(III) complexes of Schiff bases

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Complexes</th>
<th>CH</th>
<th>CH$_3$</th>
<th>C=O</th>
<th>C=N</th>
<th>C$_6$H$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(i)</td>
<td>(0)</td>
<td>(m)</td>
<td>(p)</td>
<td>(q)</td>
</tr>
<tr>
<td>1</td>
<td>a,bPh As[OC(CH$_3$)$_2$CHC(CH$_3$)$_2$NC$_6$H$_5$]</td>
<td>95.0</td>
<td>a,21.3</td>
<td>187.2</td>
<td>165.3</td>
<td>144.3</td>
</tr>
<tr>
<td>2</td>
<td>Ph As[OC(CH$_3$)$_2$CHC(CH$_3$)$_2$NC$_6$H$_5$]Cl</td>
<td>94.8</td>
<td>-</td>
<td>192.1</td>
<td>166.2</td>
<td>150.3</td>
</tr>
<tr>
<td>3</td>
<td>Ph As[OC(C$_6$H$_5$)CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>95.2</td>
<td>-</td>
<td>190.2</td>
<td>165.2</td>
<td>148.2</td>
</tr>
<tr>
<td>4</td>
<td>Ph As[OC(C$_6$H$_5$)CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>94.8</td>
<td>-</td>
<td>192.1</td>
<td>166.2</td>
<td>151.8</td>
</tr>
<tr>
<td>5</td>
<td>Ph As[OC(CH$_3$)$_2$CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>96.2</td>
<td>23.2</td>
<td>190.2</td>
<td>165.2</td>
<td>148.3</td>
</tr>
<tr>
<td>6</td>
<td>Ph As[OC(CH$_3$)$_2$CHC(C$_6$H$_5$)NC$_6$H$_5$]Cl</td>
<td>95.4</td>
<td>23.8</td>
<td>187.2</td>
<td>166.2</td>
<td>149.3</td>
</tr>
</tbody>
</table>

* = Values are given in order of ipso, ortho, meta, para, respectively.

References