
International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 10, Issue 3, 2014 pp 42-46 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 10 Issue 3                                                                         Page 42 

A Note on the Finite Sample Properties of Ridge 

Estimator 
 

Madhulika Dube
1*

, Isha
2**

, Vinod Kumar
3**

 

{1Professor and HOD, 2, 3Research Scholars}, Department of Statistics, M. D. University, Rohtak, Hariyana, INDIA. 

Corresponding Addresses: 

 **ishahooda@gmail.com, ***vinod.dubet@gmail.com 

Research Article  
 

Abstract: The article studies the finite sample properties of 
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results and are found to be quite different from those already 

existing in literature. 
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Introduction  
In linear regression models, Ridge Regression is perhaps 

the most widely used technique in the presence of 

multicollinearity. Proposed by Hoerl and Kennard [3], [4] 

the Ridge Regression Estimator is characterized by a 

scalar, the choice of which is subjective requiring the 

judgment of the analyst. However, working with the 

canonical form of the regression model Hoerl and 

Kennard [3] defined general ridge regression estimator 

suggesting an initial choice of the characterizing scalar. 

Extensive work has been carried out since then, a good 

account of which is available in Vinod and Ullah [7] and 

[6]. Working with the initial choice of the characterizing 

scalar, Dwivedi et al. [1] worked out the first two 

moments of individual coefficients of GRR estimator 

assuming error distribution to be normal. Hemmerle and 

Carey[2] also worked out exact properties of two 

different forms of GRR estimators but demonstrated that 

the one suggested by Hoerl and Kennard [3] performs 

better in terms of relative bias and relative risk. It will not 

be out of context to mention that the estimators perform 

differently when sample size is small and it is more so in 

the presence of multicollinearity as negative effects of 

multicollinearity are magnified in smaller samples. 

Owing to this, assuming error distribution to be normal 

the paper attempts to assess the finite sample behavior of 

generalized ridge regression. For this purpose the relative 

bias, relative mean squared error and the relative 

efficiency of the estimator in comparison to OLS have 

been evaluated numerically and compared with the 

existing results. Interestingly, the expressions of relative 

bias and relative risk are found to be different from the 

existing results obtained by Dwivedi et al. [1]. The 

following section describes the estimator and its 

properties and empirically enumerates the results. A brief 

outline of proof of the theorem is provided in the end. 

 

The Estimator and its Properties 
Consider the canonical form of the linear regression model � = �� + u                (2.1) 

where y is an n × 1 vector of n observation on the dependent variables, X is an n × p full column rank matrix of n 

observation of p explanatory variables, and � is a p × 1 vector of unknown regression coefficients . The elements of 

disturbance vector u are assumed to be i.i.d each following normal distribution with mean zero and variance σ
2
 so that  ��u� = 0 and ��uu′� = σ�I� ; u~N�0,σ�I��          (2.2) 

Following [3], we can write X′X =∧  �ℎ!"! ∧= #$%&'(), (� … . . (,-  
This canonical reduction can be obtained by using singular value decomposition of the n × p matrix X (see, [7], p5-6). 

Using it the general ridge regression estimator is given by  �∗ = �∧ +K�0)X′y               (2.3)  = ∆3 �ℎ!"! ∆= �∧ +K�0) ∧ 
and K is a diagonal matrix with nonnegative elements k1,k2,…kp as the characterizing scalar, and  

 3 =∧0) X′y  
is the ordinary least square estimator of β. Clearly, GRR is a biased estimator, with bias vector  4$%5��∗� = ���∗ − ��               (2.4) 
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 =  '∆ − 7,-�  
and  

 89���∗� = :�∆� ∧0)+ ;∆ − 7,<��′;∆ − 7,<   

 = :�∆ ∧0) ∆′                (2.5) 

as ∧ and K are assumed to be diagonal matrices, ∆ is also diagonal and 

 =" 89���∗� = ∑ ?@ABCDB@EB@�ABCEB�@,FG)               (2.6)     

Provided HF ‘s are non-stochastic. 

Now minimizing the expression (2.6) term by term i.e. minimizing the diagonal elements of the mean squared error 

matrix of (2.5) with respect to HF yields  HF�I,J� = ?@DB@  �$ = 1,2, … , L�             (2.7)      

[3] Suggested to start with M@NB@ = HOF�5%��                (2.8)      

where 3F is the i
th

 element of the ordinary least squares estimator b of � and 5� = )P �� − �3�′�� − �3�            (2.9)      

is an unbiased estimator of :� where Q = �R − L� 

Using (2.8) in (2.3) leads to an adaptive estimator of � as �S = ;∧ +HO<0)�′�              (2.10)      

where the i 
th

 element of �S is given by �SF  = ABABC TUV  3F                 (2.11)      

For finite sample sizes, the following theorem gives the first and second moments of �SF 
Theorem: Assuming normality of errors the first and second moments of �SF  of (2.11) are given by 

�'�SF  - = �F!0WB@@ X∑ YWB@@ Z[\]P\^[_]@`
a^bC]@`a�b�∞bG)  . ∑ ^P0)P `c

∞cGd  . a^bCe@C]@Cc`a�cC)�  . a^bCcCf@`.a^bCcCf@Ce@`g       (2.12) 

    

�'�SF  -� = �F�!0WB@@ X∑ ��b0)�YWB@@ Z[\@P\^[_]@`
�.a^bC]@`a�b�∞bG)  ∑ ^P0)P `c

∞cGd  . a^bCe@C]@Cc`a�cC)�  . a^bCcCh@`.a^bCcCh@Ce@`g      (2.13) 

  

where iF� = ABDB@?@  is the non-centrality parameter. Using (2.12) and (2.13) we can compute the bias and mean squared error 

of �SF . 
 

Proof: see Appendix. 

Using these, it is easy to compute the relative bias and relative mean squared error using j4;�SF  < = � ^DUB 0DBDB `                (2.14)     

and j89�;�SF  < = � ^DUB 0DBDB `�
               (2.15)     

Respectively. The efficiency of the OLS relative to GRR estimator is obtained from kF = lmn;DUB <o�NB� × 100                 (2.16)     

 = 100iF�j89�;�SF  <  
The values of j4;�SF  <, j89�;�SF  < and kF have been tabulated for a few selected vales of 

pB@�  and Q .These results are 

provided in Tables 2.1, 2.2, 2.3 respectively and have been graphed for selected values of 
pB@�  and Q.  
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The expressions (2.12) and (2.13) are clearly different from those obtained by Dwivedi et al. [1] and therefore a 

substantial difference is observed numerically. Unlike the results obtained by Dwivedi et al. [1], the magnitude of 

relative bias is found to be decreasing function of the non-centrality parameter and an increasing function of degrees of 

freedom, so long as 
pB@� > 5 and Q < 4. However, for Q ≥ 4 the magnitude of relative bias is found to be increasing. 

Interestingly, as Q increases the relative bias tends to -1, justification of this easily comes from the fact that the Ridge 

regression estimator shrinks the parameter vector towards zero. The relative MSE and relative efficiency are also 

observed to be decreasing for specific values of Q and 
pB@� . Hence, the finite sample properties of the Ridge regression 

estimator are not only heavily dependent upon the non-centrality parameter but on the degrees of freedom as well. It is 

also pertinent to mention that ambiguity in the numerical computations in relative bias, relative MSE and relative 

efficiency are found in the paper by Dwivedi et al. [1] when 
pB@� > 5 which are evident in the respective tables. 
 

Table 2.1: Relative Bias for specific values of non-centrality parameter and degrees of freedom vwxx ↓ 
 → { 

1 2 5 10 20 50 

0.01 
E0 -0.24917 -0.28795 -0.46717 -0.73385 -0.9078 -0.98448 

E1 -0.249 -0.287 -0.318 -0.33 -0.337 -0.353 

0.05 
E0 -0.24588 -0.28419 -0.47043 -0.73901 -0.91041 -0.98502 

E1 -0.246 -0.283 -0.313 -0.325 -0.332 -0.348 

0.1 
E0 -0.24187 -0.27962 -0.47464 -0.74536 -0.91358 -0.98566 

E1 -0.242 -0.278 -0.307 -0.319 -0.326 -0.341 

0.5 
E0 -0.21306 -0.24776 -0.5126 -0.79201 -0.93533 -0.98992 

E1 -0.213 -0.243 -0.268 -0.278 -0.283 -0.296 

0.7 
E0 -0.2006 -0.2347 -0.53362 -0.81263 -0.94412 -0.99155 

E1 -0.201 -0.228 -0.251 -0.26 -0.265 -0.276 

0.9 
E0 -0.18924 -0.22337 -0.55544 -0.83154 -0.95175 -0.99292 

E1 -0.189 -0.215 -0.236 -0.244 -0.248 -0.258 

1 
E0 -0.18394 -0.21832 -0.56653 -0.84038 -0.95518 -0.99352 

E1 -0.184 -0.208 -0.228 -0.236 -0.241 -0.25 

2 
E0 -0.14196 -0.18716 -0.67665 -0.90889 -0.97873 -0.99732 

E1 -0.142 -0.158 -0.172 -0.177 -0.18 -0.185 

5 
E0 -0.1107 -0.25493 -0.89913 -0.98566 -0.99789 -0.99982 

E1 -0.08 -0.086 -0.091 -0.093 -0.094 -0.095 

10 
E0 -0.56774 -0.70662 -0.99125 -0.99952 -0.99996 -1 

E1 -0.045 -0.047 -0.048 -0.049 -0.049 -0.049 

50 
E0 -1 -1 -1 -1 -1 -1 

E1 -0.014 -0.014 -0.014 -0.014 -0.014 -0.014 
 

E0 –Results by our approach 

E1-Results by Dwivedi et al. [1]. 
 

Table 2.2: Relative MSE for specific values of non-centrality parameter and degrees of freedom vwxx ↓ 
 → { 

1 2 5 10 20 50 

0.01 
E0 31.53006 28.35765 19.30435 8.598509 2.945015 1.17679 

E1 31.53 28.423 28.85 24.837 24.267 22.754 

0.05 
E0 6.525343 5.922473 4.079349 2.146142 1.245423 1.010629 

E1 6.525 5.94 5.454 5.263 5.155 4.87 

0.1 
E0 3.394597 3.111778 2.178566 1.348879 1.03842 0.991026 

E1 3.395 3.123 2.898 2.809 2.758 2.626 

0.5 
E0 0.853875 0.819369 0.686614 0.779676 0.909809 0.982917 

E1 0.854 0.827 0.804 0.795 0.789 0.776 

0.7 
E0 0.657999 0.63841 0.598543 0.768053 0.914648 0.985032 

E1 0.658 0.646 0.635 0.631 0.628 0.622 

0.9 
E0 0.543213 0.530987 0.561328 0.774361 0.922711 0.987153 

E1 0.543 0.538 0.533 0.531 0.53 0.527 

1 
E0 0.501285 0.570042 0.552523 0.780415 0.927023 0.988142 

E1 0.501 0.498 0.495 0.494 0.493 0.492 

2 E0 0.289568 0.292192 0.593021 0.858859 0.962787 0.994925 
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E1 0.29 0.292 0.294 0.295 0.295 0.296 

5 
E0 0.118409 0.213709 0.854008 0.975889 0.996133 0.999642 

E1 0.123 0.123 0.124 0.124 0.124 0.124 

10 
E0 0.455941 0.620464 0.986397 0.999155 0.999928 0.999996 

E1 0.059 0.058 0.058 0.058 0.057 0.057 

50 
E0 1 1 1 1 1 1 

E1 0.013 0.013 0.013 0.013 0.013 0.013 

E0 –Results by our approach 

E1-Results by Dwivedi et al. [1]. 
 

   
Graph: Showing relative bias and relative MSE of GRR Estimator (Figure 1 and Figure2) 

 

Table 2.3: Relative Efficiency for specific values of non-centrality parameter and degrees of freedom vwxx ↓ 
 → { 

1 2 5 10 20 50 

0.01 
E0 63.06011 56.7153 38.6087 17.19702 5.890029 2.35358 

E1 63.06 56.846 51.701 49.674 48.534 45.508 

0.05 
E0 65.25343 59.22473 40.79349 21.46142 12.45423 10.10629 

E1 65.253 59.398 54.542 52.626 51.548 48.698 

0.1 
E0 67.89194 62.23557 43.57132 26.97759 20.76841 19.82052 

E1 67.892 62.465 57.955 56.17 55.167 52.527 

0.5 
E0 85.3875 81.93687 68.66142 77.96756 90.98089 98.29169 

E1 85.388 82.69 80.394 79.46 78.937 77.632 

0.7 
E0 92.11985 89.37737 83.79599 107.5274 128.0507 137.9045 

E1 92.12 90.405 88.907 88.282 87.936 87.106 

0.9 
E0 97.77838 95.57758 101.039 139.385 166.088 177.6875 

E1 97.779 96.845 95.985 95.607 95.403 94.949 

1 
E0 100.2571 114.0084 110.5045 156.0829 185.4047 197.6283 

E1 100.258 99.65 99.056 98.783 98.638 98.34 

2 
E0 115.8271 116.8768 237.2084 343.5434 385.1149 397.9702 

E1 115.883 116.927 117.683 117.94 118.099 118.569 

5 
E0 118.4089 213.7089 854.0076 975.8885 996.1333 999.6423 

E1 123.245 123.494 123.602 123.635 123.653 123.833 

10 
E0 911.8829 1240.929 1972.794 1998.311 1999.857 1999.992 

E1 117.495 116.319 115.394 115.026 114.891 114.656 

50 
E0 10000 10000 10000 10000 10000 10000 

E1 129.538 128.682 128.197 128.039 127.988 127.827 
  

E0 –Results by our approach 

E1-Results by Dwivedi et al. [1]. 
 

Appendix   

In order to find the expression (2.12) of the theorem, let us define  |F = }F΄� :~(F� =  (F  �F :⁄              (A.1) 

where xi (i=1,2…p) is the i
th

 column vector of X. Since 3Fis the OLS estimator of �F following  

N(�F , ?@AB ), therefore, the distribution of |F~���, 1� where � =  iF . 
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Next, the distribution of Q M@?@ is �� with Q degrees of freedom and is independent of the distribution of |F. Using|F, we 

can write �SF  = ?~AB  �Bf�B@C�  ; � = M@?@                  (A.2)  �'�SF  - = ?~AB �'∅;|F�, �< ∗ |F-                  (A.3)     

�'∅;|F�, �< ∗ |F- = !– �@@ � � ∅;|F�, �<∞d∞0∞  |F  )√�� !Y0 �B@@  C�B�Z����#|F#�             (A.4) 

Following [5] we can write the above equation as 

= !– �@@ ��� � � �B@�B@C�∞d∞0∞  )√�� !Y0 �B@@ Z ∑ ���B�[b!∞bGd ����#|F#�  

�'∅;|F�, �< ∗ |F- = !– �@@ ��� ∑ ���[b!∞bGd � � �B@_[
�B@C�∞d∞0∞  )√�� !Y0 �B@@ Z����#|F#�  

We notice that the value of integral is zero for odd values of j because then the power of z is odd. Dropping such terms 

we have 

�'∅;|F�, �< ∗ |F- = !– �@@ ��� �2 ∑ ���@[�b!∞bGd  )√�� � � �B@_@[
�B@C�∞d∞d  !Y0 �B@@ Z����#|F#��               (A.5) 

Using the duplication formula above expression becomes 

  �'∅;|F�, �< ∗ |F- = !– �@@ ��� �∑ ��@@ �[Pe@
a^bC]@`a�bC)�a^e@`∞bGd  � � ;�B@<]_[\]@

�[_e@_]/@ ��B@C��∞d∞d  !0Y�B@@ Ce�@ Z���e@0)#|F� . #��          (A.6) 

The integral part  

I = � � ;�B@<]_[\]@
�[_e_]@  ��B@C��∞d∞d  !0Y�B@@ Ce�@ Z���e@0)#|F� . #�  

is computed using the transformations �B@�B@C� = � %R# |F� + � = �  

which gives the integral part as  7 = Q0^bC]@Ce@`  ∑ ^P0)P `c
∞cGd  . a^bCe@C]@Cc`a�cC)�  . a^bCcCf@`.a^e@`a^bCcCf@Ce@`                (A.7) 

Substituting the above value of (A.7) and using it in (A.6) we get the first raw moment of �SF  as given in the theorem. 

Proceeding in the same way the second and higher raw moments of �SF can be obtained. 
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