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Abstract: The article studies the finite sample properties of
generalized ridge regression estimator using a different approach. A
comparative study of relative bias and relative efficiency of the
estimator with respect to the ordinary least square have been made
empirically. The results have also been compared with the existing
results and are found to be quite different from those already
existing in literature.
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Introduction

In linear regression models, Ridge Regression is perhaps
the most widely used technique in the presence of
multicollinearity. Proposed by Hoerl and Kennard [3], [4]
the Ridge Regression Estimator is characterized by a
scalar, the choice of which is subjective requiring the
judgment of the analyst. However, working with the
canonical form of the regression model Hoerl and
Kennard [3] defined general ridge regression estimator
suggesting an initial choice of the characterizing scalar.
Extensive work has been carried out since then, a good
account of which is available in Vinod and Ullah [7] and
[6]. Working with the initial choice of the characterizing
scalar, Dwivedi et al. [1] worked out the first two

The Estimator and its Properties

Consider the canonical form of the linear regression model

y=XB+u

moments of individual coefficients of GRR estimator
assuming error distribution to be normal. Hemmerle and
Carey[2] also worked out exact properties of two
different forms of GRR estimators but demonstrated that
the one suggested by Hoerl and Kennard [3] performs
better in terms of relative bias and relative risk. It will not
be out of context to mention that the estimators perform
differently when sample size is small and it is more so in
the presence of multicollinearity as negative effects of
multicollinearity are magnified in smaller samples.
Owing to this, assuming error distribution to be normal
the paper attempts to assess the finite sample behavior of
generalized ridge regression. For this purpose the relative
bias, relative mean squared error and the relative
efficiency of the estimator in comparison to OLS have
been evaluated numerically and compared with the
existing results. Interestingly, the expressions of relative
bias and relative risk are found to be different from the
existing results obtained by Dwivedi et al. [1]. The
following section describes the estimator and its
properties and empirically enumerates the results. A brief
outline of proof of the theorem is provided in the end.

2.1)

where y is an n X 1 vector of n observation on the dependent variables, X is an n X p full column rank matrix of n

observation of p explanatory variables, and fisap X 1 vector of unknown regression coefficients .

The elements of

disturbance vector u are assumed to be i.i.d each following normal distribution with mean zero and variance ¢ so that

E[u] = 0 and E[uu’] = ¢l ; u~N(0,5?1,)
Following [3], we can write
XX =A where A= diag[dy,2; ... 4]

(2.2)

This canonical reduction can be obtained by using singular value decomposition of the n X p matrix X (see, [7], p5-6).

Using it the general ridge regression estimator is given by
B* = (A+K) XYy
= Ab where A= (A+K)"1 A

(2.3)

and K is a diagonal matrix with nonnegative elements k;,k»,...k, as the characterizing scalar, and

b=A"1Xy

is the ordinary least square estimator of p. Clearly, GRR is a biased estimator, with bias vector

Bias(B*) = E(B" = B)
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= [A - p]ﬁ

and

MSE(B*) = 0202 A2+ (A—1,)BB (A - I,)

=0g2ANTA (2.5)
as A and K are assumed to be diagonal matrices, A is also diagonal and

*\ _— P Uzli"'ﬁizkiz
tr MSE(B*) = =1 k)t
Provided k; ‘s are non-stochastic.
Now minimizing the expression (2.6) term by term i.e. minimizing the diagonal elements of the mean squared error

matrix of (2.5) with respect to k; yields

(2.6)

2
Kiopt) = % (i=12..,p) 2.7)
[3] Suggested to start with
2
Z_iz = ki(say) 2.8)
where b; is the i" element of the ordinary least squares estimator b of 8 and
s2==(y—Xb) (y — Xb) (2.9)

is an unbiased estimator of 62 where v = (n — p)
Using (2.8) in (2.3) leads to an adaptive estimator of 5 as

f=(n+k) "Xy (2.10)
where the i " element of £ is given by

~ A

Bi =775 bi @2.11)

For finite sample sizes, the following theorem gives the first and second moments of f3;
Theorem: Assuming normality of errors the first and second moments of f; of (2.11) are given by

(d) 0

2 — .v o1 . 3
51 LI PR, 2 - —1\" F(]+E+E+r) F(]+r+5).
E[Bi] = pie™ | Zj r(+3ra) 'Zr=°( v ) T+ r(jereded) 2.12)
AN
E[B] = 2oL |5 QJ_D(TL) L h)s (E)r (rgrgw) rlirs) (2.13)
vl = ar(i+hrG) =0\ w ) rer) Tr(jereisd) '
B2
where 17 = A;i‘ is the non-centrality parameter. Using (2.12) and (2.13) we can compute the bias and mean squared error

of ‘BAL' .
Proof: see Appendix.
Using these, it is easy to compute the relative bias and relative mean squared error using

5\ _ (Bi-Bi
RB(B;) =E (—ﬁi ) (2.14)
and
> 2
RMSE(B;) = £ () (2.15)
Respectively. The efficiency of the OLS relative to GRR estimator is obtained from
_ MSE(B:)
) x 100 (2.16)

= 100t?RMSE(S;)
A N 2
The values of RB (ﬂi ),RMSE (ﬁi ) and n; have been tabulated for a few selected vales of T;‘ and v .These results are

2
provided in Tables 2.1, 2.2, 2.3 respectively and have been graphed for selected values of T;‘ and v.
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The expressions (2.12) and (2.13) are clearly different from those obtained by Dwivedi er al. [1] and therefore a
substantial difference is observed numerically. Unlike the results obtained by Dwivedi et al. [1], the magnitude of
relative bias is found to be decreasing function of the non-centrality parameter and an increasing function of degrees of

2
freedom, so long as T;‘ > 5 and v < 4. However, for v > 4 the magnitude of relative bias is found to be increasing.

Interestingly, as v increases the relative bias tends to -1, justification of this easily comes from the fact that the Ridge
regression estimator shrinks the parameter vector towards zero. The relative MSE and relative efficiency are also
2 . . . .
observed to be decreasing for specific values of v and %‘ Hence, the finite sample properties of the Ridge regression
estimator are not only heavily dependent upon the non-centrality parameter but on the degrees of freedom as well. It is
also pertinent to mention that ambiguity in the numerical computations in relative bias, relative MSE and relative

2
efficiency are found in the paper by Dwivedi et al. [1] when T;‘ > 5 which are evident in the respective tables.

Table 2.1: Relative Bias for specific values of non-centrality parameter and degrees of freedom
2

i) 1 2 5 10 20 50
2" |~V
001 |EO [ 024917 [ 028795 | 046717 | -0.73385 | -0.9078 [ -0.98448
El | -0.249 -0.287 -0.318 -0.33 -0.337 -0.353
005 _EO | -024588 | -0.28419 [ -0.47043 [ -0.73901 | -0.91041 [ -0.98502
El | -0246 | -0.283 -0.313 -0.325 0332 | 0348
01 | _EO | -0.24187 | -0.27962 | -0.47464 | -0.74536 | -0.91358 | -0.98566
~ | El | 0242 | -0.278 -0.307 0319 | 0326 | -0.341
05 |_EO | 021306 | -0.24776 | -0.5126 | -0.79201 [ -0.93533 | -0.98992
® [El | -0213 -0.243 -0.268 -0.278 -0.283 -0.296
07 | _EO | 02006 [ 02347 | -0.53362 | -0.81263 | -0.94412 | -0.99155
" 'El | -0201 -0.228 -0.251 -0.26 -0.265 -0.276
09 | EO | -0.18924 [ -0.22337 | -0.55544 | -0.83154 | -0.95175 | -0.99292
~ [ El | -0.189 -0.215 -0.236 | -0.244 | -0.248 -0.258
| | B0 | -0.18304 [ -0.21832 [ -0.56653 | -0.84038 [ -0.95518 | -0.99352
El | -0.184 | -0.208 -0.228 -0.236 | -0.241 -0.25
, | _EO | -0.14196 | -0.18716 | -0.67665 | -0.00889 | -0.97873 | -0.99732
El | -0.142 | -0.158 0172 | 0177 -0.18 -0.185
s [ B0 | -0.1107 [ -0.5493 [ -0.89913 [ -0.98566 | -0.99789 [ -0.99982
El | -0.08 -0.086 | -0.091 -0.093 -0.094 | -0.095
10 |_EO | -0.56774 | -0.70662 | -0.99125 | -0.99952 | -0.99996 -1
El | -0.045 -0.047 | -0.048 -0.049 -0.049 -0.049
s B9 -1 -1 -1 -1 -1 -1
El | 0014 | -0014 | -0014 | -0014 | -0014 | -0.014

EO —Results by our approach

E1-Results by Dwivedi et al. [1].

Table 2.2: Relative MSE for specific values of non-centrality parameter and degrees of freedom

2

% 1 2 5 10 20 50
2 |2V
001 |EO [ 31.53006 | 2835765 | 19.30435 | 8.598509 | 2.945015 | 1.17679
El | 3153 28.423 28.85 24.837 24.267 22.754
005 |_EO | 6525343 | 5922473 | 4.079349 | 2.146142 | 1245423 | 1.010629
El | 6.525 5.94 5.454 5.263 5.155 4.87
0.1 |EO [ 3304507 [ 3.111778 [ 2.178566 | 1348879 | 1.03842 [ 0.991026
~ [El [ 3395 3.123 2.898 2.809 2.758 2.626
05 | EO | 0853875 | 0.819369 | 0.686614 | 0.779676 | 0.909809 | 0.982917
2 [El [ 0854 0.827 0.804 0.795 0.789 0.776
07 |EO | 0657999 | 0.63841 | 0.598543 | 0768053 | 0.914648 | 0985032
" [EL [ 0658 0.646 0.635 0.631 0.628 0.622
0o | EO | 0543213 | 0530987 | 0.561328 | 0774361 | 0.922711 | 0987153
~ [El [ 0543 0.538 0.533 0.531 0.53 0.527
| [LE0 | 0501285 | 0570042 | 0.552523 | 0.780415 | 0927023 | 0988142
El | 0501 0.498 0.495 0.494 0.493 0.492
2 | E0 | 0289568 | 0.292192 | 0.593021 | 0.858859 | 0.962787 | 0.994925

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 10 Issue 3

Page 44



Madhulika Dube, Isha, Vinod Kumar

El 0.29 0.292 0.294 0.295 0.295 0.296
5 EO | 0.118409 | 0.213709 | 0.854008 | 0.975889 | 0.996133 | 0.999642
El 0.123 0.123 0.124 0.124 0.124 0.124
10 EO | 0.455941 | 0.620464 | 0.986397 | 0.999155 | 0.999928 | 0.999996
El 0.059 0.058 0.058 0.058 0.057 0.057
50 EO 1 1 1 1 1 1
El 0.013 0.013 0.013 0.013 0.013 0.013
EO —Results by our approach
E1-Results by Dwivedi et al. [1].
Relative bias Relative MSE
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Graph: Showing relative bias and relative MSE of GRR Estimator (Figure 1 and Figure2)

Table 2.3: Relative Efficiency for specific values of non-centrality parameter and degrees of freedom
2

%y 1 2 5 10 20 50
2" |2V
001 |EO [ 63.06011 [ 56.7153 [ 38.6087 [ 17.19702 | 5890029 | 2.35358
El | 63.06 56.846 | 51701 | 49.674 | 48534 | 45.508
005 |_EO | 6525343 [ 5920473 | 40.79349 [ 2146142 | 12.45423 [ 10.10629
El | 65253 | 59398 | 54542 | 52626 | 51548 | 48.698
01 |_EO0 [ 67.89194 | 6223557 | 43.57132 | 26.97759 | 20.76841 | 19.82052
© |E1 | 67892 | 62465 | 57.955 56.17 55167 | 52527
05 |_EO | 853875 | 8193687 | 68.66142 | 77.96756 | 90.98089 | 98.29169
® [TE1 | 85388 82.69 80.394 79.46 78937 | 77.632
07 |_EO [ 92.11985 [ 89.37737 [ 83.79599 | 107.5274 | 128.0507 | 137.9045
T EL ] 9212 90405 | 88907 | 88.282 | 87.936 | 87.106
0o | _EO [ 97.77838 [ 9557758 | 101039 | 139.385 [ 166.088 | 177.6875
“ BT [ 97779 | 96845 | 95985 | 95.607 | 95403 | 94.949
. |_EO | 1002571 [ 114.0084 | 1105045 [ 156.0829 [ 185.4047 | 197.6283
El | 100258 | 99.65 99.056 | 98783 | 98.638 98.34
, | B0 [ 1158271 | 1168768 | 2372084 | 343.5434 | 385.1149 | 397.9702
El | 115883 | 116927 | 117.683 | 117.94 | 118099 | 118.569
s | B0 | 1184089 | 213.7089 | 854.0076 [ 975.8885 | 996.1333 | 999.6423
El | 123245 | 123494 | 123.602 | 123.635 | 123.653 | 123.833
1o |_EO [ 911.8829 [ 1240.929 | 1972.794 | 1998.311 | 1999.857 | 1999.992
El | 117495 | 116319 | 115394 | 115.026 | 114.891 | 114.656
5o |_EO | 10000 10000 10000 10000 10000 10000
El | 129538 | 128682 | 128.197 | 128.039 | 127.988 | 127.827

EO —Results by our approach
E1-Results by Dwivedi et al. [1].

Appendix

In order to find the expression (2.12) of the theorem, let us define

Zy = xiVY/O-\//Ti = A Bi/o

where x; (i=1,2...p) is the i™ column vector of X. Since b;is the OLS estimator of 3; following
2
N(B;, %), therefore, the distribution of z;~N(5,1) where 6 = ;.
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2
Next, the distribution of v% is y2 with v degrees of freedom and is independent of the distribution of z;. Usingz;, we

can write

z} s2
pi = ﬁZH.C—; (A.2)
E[f:] = 7E[0(z ) * ] (A3)

2 2w 2 1 <_§+2i6>
E[@(zt,c) xz] ="z [_ [T 0(zl.c) zi Sz f(e)dzdc (A4)
Following [5] we can write the above equation as
22
) ( _l> " (6 1)
I_wIZ+C\/_ 22]‘0 z f()dZdC

E[Q)(Zl ,C) * Zl] = e_?i @ (6)1 f_wfo o \/1_” <_7)f(c)dzidc

We notice that the Value of 1ntegral is zero for odd values of j because then the power of z is odd. Dropping such terms
we have

E[(Z)(zl ,C) * zl] =e 62 % 2 X5 0 2]' e(_7>f(c)dzidc (A.5)

Using the duplication formula above expression becomes

2 62 (82) Z (Ziz)lﬂ'_% _<§+§) z—ld 2 d A
El0(e ) ) = ¢ o G o e g ¢ O e o
The integral part
2
© 2\1ti—3 _<Z vc)
I—f f (i+)1 e \? (C)E 'dz? .dc
2T (z2+40)
is computed using the transformations

—Uandz +c=V

z2+c
Wthh gives the integral part as

o) g oy ) e
I'=v ( )Z ( ) orer+n F(j+r+%+§) (A7)

Substituting the above value of (A.7) and using it in (A.6) we get the first raw moment of 3; as given in the theorem.
Proceeding in the same way the second and higher raw moments of 3; can be obtained.
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