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Abstract: In the present communication, we give a brief 

summary about the various kinds of fuzziness measures 

investigated so far and formulate some critical aspect of the 

theory. Keeping in the view the non-probabilistic nature of the 

experiments, two new measures of fuzzy entropy have been 

introduced. The essential properties of these measures have been 

studied. The existing as well as the newly introduced measure of 

fuzzy entropy has been applied to the normalized principle. 
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Introduction 
The main concepts of information theory can be 

grasped by considering the most widespread means of 

human communication languages. Two important 

aspects of a concise language are as follows: First, the 

most common words (e.g., “a”, “the” and “I”) should be 

shorter than less common words (e.g., “Benefit”, 

“Generation” and “Mediocre”), so that sentences will 

not be too long. Such a tradeoff in word length is 

analogous to data compression and is the essential 

aspect of source coding. Second, if part of a sentence is 

unheard or misheard due to noise- e.g., a passing car- 

the listener should still is able to glean the meaning of 

the underlying message.  Such robustness is as essential 

for an electronic communication system as it is for a 

language: properly building such robustness in to 

communication is done by channel coding. Source 

coding and channel coding are the fundamental 

concerns of information theory. Fundamental theorem 

of information theory state “It is possible to transmit 

information over a noisy channel at any rate less than 

channel coding with an arbitrary small probability of 

error.” Information theory considered here to be 

identified by Shannon (1948). Are probabilistic 

methods and statistical techniques be the best available 

tools for solving problems involving uncertainty? This 

question is often now being answered in the negative, 

especially by computer scientists and engineers. These 

respondents are motivated by the view that probability 

is inadequate for dealing with “certain kinds” of 

uncertainty. Thus alternatives are needed to fill the gap. 

Zadeh (1965) introduced fuzzy set as a mathematical 

construct in set theory with no intention of using it to 

enhance, complement or replace probability theory. 

Fuzzy sets plays a significant role in many deployed 

system because of their capability to model known 

statistical imprecision. A fuzzy set is a class of objects 

with continuum of grade of membership. Such a set is 

characterized by a member of functions which assign to 

each object a grade of membership ranging between 0 

and 1. Fuzzy set A is represented as � = ���/�����	: � =1,2 … , �	, where �����	 gives the degree of 

belongingness of the element �� to the set A. If every 

element of the set A is 0 or 1, there is no uncertainty 

about it and the set is said to be crisp set. On the other 

hand, a fuzzy set A is defined by a characteristic 

function �����	 = ���, ��, … . . , ��� → �0,1�. the function �����	 associate with each ��  belongs to �� grade of 

membership to the set A and is known as membership 

function. The importance of the fuzzy sets comes from 

the fact that it can be deal with imprecise and inexact 

information. 
 

Preliminaries 
Fuzzy Information Measures 

De Luca and Termini (1972) introduced the concept of 

fuzziness measure in order to obtain a global measure 

of the indefiniteness connected with the situations 

described by fuzzy sets. Such a measure characterizes 

the sharpness of the membership functions. It also can 

be regarded as entropy, in the sense, that it measures the 

uncertainty about the presence or absence of a certain 

property over the investigated set. They introduced a set 

of four axioms and these are widely accepted as 

criterion for defining any fuzzy entropy. In fuzzy set 

theory, the entropy is a measure of fuzziness which 

expresses the amount of average ambiguity or difficulty 

in making a decision whether an element belongs to a 

set or not. A measure of fuzziness ���	 in a fuzzy set 

should have at least the following properties: 

P1 (Sharpness): ���	  is minimum if and only if A is a 

crisp set, i.e. �����	 = 0 �� 1  for all�. 
P2 (Maximality): ���	  is maximum if and only if A is 

a most fuzzy set i.e. �����	 = ��  for all�. 
P3 (Resolution): ���∗	 ≤ ���	, where �∗ is a 

sharpened version of �. 

P4 (Symmetry): ���	 = ���" 	, where �" is 

complement set of �. 
Definition: A fuzzy set �∗ is called a sharpened version 

of fuzzy set � if the following conditions are satisfied: ��∗���	 ≤ �����	,         if ����	 ≤ 0.5 for all �. 
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��∗���	 ≥ �����	,         if ����	 ≥ 0.5 for all �. 
The above defined properties are natural requirements for 

a measure of fuzziness. All measures introduced so far 

satisfy these properties. 

Since �����	 and %1 − �����	' give the same degree of 

fuzziness, therefore, De Luca and Termini (1972) 

defined measure of  fuzzy entropy for a fuzzy set A 

corresponding to Shannon’s (1948) entropy as ���	 = − �� ∑ ) �����	*�+�����	+%1 − �����	'*�+%1 − �����	'-��.�     �1.1	                                                     
In the next section, we discuss a brief summary about 

the various fuzziness measures investigated so far. 

The Survey of Some Existing Measures of Fuzzy 

Entropy 

This section includes various developments in the area 

of fuzzy information measures. Kaufmann (1975), 

proposed a measure using the generalized relative 

hamming distance as: 

 ���	 = �/ . ∑ 0�����	 − ��12���	0/�.�                        �2.1	        

And defined another measure using the generalized 

relative Euclidean distance as: 

���	 = �
/12 3∑ 4�����	 − ��12���	5�/�.� 612                      �2.2	        

Ebanks (1983) defined fuzzy information measure for a 

fuzzy set as: ���	 = ∑ 7�����	. %1 − �����	'8/�.�                             �2.3	        

Kapur (1997) introduced the following measure of 

fuzzy entropy, which uses the Logarithmic scale as: �:,;��	 = �;<: *�+ ∑ =>?@�AB	C%�<>?�AB	'@DEBF1∑ G>?H�AB	C%�<>?�AB	'HIEBF1                     �2.4	        

; α≥1, β≤1 

After that Parkash and Sharma (2004) introduced two 

measures of fuzzy entropy, keeping in the view the 

existing probability measures, which are given by KL��	 =
∑ M *�+%1 + N�����	'+*�+ 71 + N%1 − �����	'8 − *�+�1 + N	O��.�       �2.5	        

    ;N ≥ 0   

And  

�L��	 = − P ) �����	*�+�����	+%1 − �����	'*�+%1 − �����	'-�
�.�  

 

− �L ∑ Q %1 + N�����	'*�+%1 + N�����	'+R1 + N%1 − �����	'S*�+R1 + N%1 − �����	'S−�1 + N	*�+�1 + N	 T��.�          

(2.6)           

            ;N > 0     
Some other measure of fuzzy entropy were discussed, 

characterized and generalized by various authors. In 

next section, we put an effort to propose some new 

measure of fuzzy entropy corresponding to Harmonic 

Mean representation. 
 

Measure of Fuzzy Entropy and their Validity  

Here, we introduced some fuzzy information entropy 

corresponding to harmonic mean, which are as follows: 

Fuzzy Entropy Corresponding to Harmonic Mean 

Firstly, we propose a new measure of fuzzy information 

as given by the following mathematical expression: �V��	 = − �
∑ W 1X?%YB' Z[\  X?%YB'C 171]X?%YB'8^_` 71]X?%YB'8aEBF1

                          �3.1	        

To prove that the measure �3.1	 is a correct measure of 

fuzzy entropy, we have to study its essential properties 

which are as follows: 

1. �V��	 is a concave function of �����	. b���c: We have 

d�V��	d�����	 =

� ∑

e
fff
fff
fg

1%1 − �����	'� 7*�+%1 − �����	'8�
+ 1%1 − �����	'� 7*�+%1 − �����	'8− 1%�����	'� 7*�+%�����	'8�

− 1%�����	'� 7*�+%�����	'8 h
iii
iii
ij

��.�

)∑ 4 1%���AB	' + 1%1 − �����	'*�+ %1 − �����	'5��.� -� 

Also, 

 

k2lm��	k2>?�AB	 = −  
��

no
oo
p
ooo
q

∑
e
fff
fff
g 1

71]X?%YB'82r^_`71]X?%YB'8s2
C 171]X?%YB'82r^_`71]X?%YB'8s< 1

7X?%YB'82r^_`7X?%YB'8s2
< 17X?%YB'82r^_`7X?%YB'8s h

iii
iii
j

EBF1

to
oo
u
ooo
v2

Q∑ w 1rX?%YB'sC 171]X?%YB'8^_` 71]X?%YB'8xEBF1 Ty 

 

        + 

z ∑

e
ff
ff
ff
ff
ff
ff
fg

271]X?%YB'8yr^_`71]X?%YB'8sy
C y71]X?%YB'8yr^_`71]X?%YB'8s2
C 271]X?%YB'8yr^_`71]X?%YB'8sC 27X?%YB'8yr^_`7X?%YB'8sy

C y7X?%YB'8yr^_`7X?%YB'8s2
C 27X?%YB'82r^_`7X?%YB'8s h

ii
ii
ii
ii
ii
ii
ij

{|F1

Q∑ w 1rX?%YB'sC 171]X?%YB'8^_` 71]X?%YB'8xEBF1 T2 

≤ 0.  
Hence,  �V��	 is a concave function. 
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2. �V��	  does not change when �����	 is 

replaced by 1-�����	. 

3. �V��	   is an increasing function of �����	 for 0 ≤ �����	 ≤ ��. 
4. �V��	   is an decreasing function of �����	 for �� ≤ �����	 ≤ 1. 
5. �V��	 = 0 when �����	 is a crisp set. 

6. �V��	 attain its maximum values when �����	 = ��. 
Since �V��	 satisfies all the essential properties of 

being a measure of fuzzy entropy, it is valid measure of 

fuzzy entropy. Different values of �V��	 corresponding 

to different values of �����	 are computed in the Table-

1:                           
 

Table 1 �����	 �V��	 

0.0 0.0000 

0.1 0.0672 

0.2 0.1148 

0.3 0.1476 

0.4 0.1699 

0.5 0.1733 

0.6 0.1699 

0.7 0.1476 

0.8 0.1148 

0.9 0.0672 

1.0 0.0000 

 The value of �V��	 N�d �����	 are graphically 

represented in the Fig-1, which shows that the measure 

introduced in equation �3.1	 satisfies all the properties 

from �1	 to�6	. 
 

 
Figure 1: Graph Hh(A) Vs. µA(xi) 

 

Exponential Fuzzy Entropy Corresponding to   

Harmonic Mean  

We propose here another measure of fuzzy entropy as 

follows: �V~= �%√� − 1'
∑ ) 1�����	��<>?�AB	 + 1%1 − �����	'�>?�AB	 − 1-��.�

 �3.2	 

We shall prove that the measure introduced in equation �3.2	  is a correct measure of fuzzy entropy, and, we 

studied its essential properties which are as follows: 

1. �V~ is a concave function of �����	. 

Proof: 

d�V~d �����	 = −

�%√� − 1' ∑
e
ff
ff
fg

1�>?�A1	%1 − �����	'�
− 1�%�<>?�AB	'%�����	'�

+ 1�%�<>?�AB	'. �����	− 1�>?�AB	%1 − �����	' h
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ij��.�
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q∑ � 1�����	��<>?�AB	+ 1%1 − �����	'�>?�AB	 − 1���.� tu

v�  
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≤ 0. 
Since 

k2lm�k>?�AB	2 ≤ 0,  
Hence, �V~  is a concave function.  

2. �V~��	 does not change when �����	 is replaced by        

     1-�����	. 

3. �V~��	   is an increasing function of �����	 for       

0≤�����	≤��. 

4.  �V~��	   is an decreasing function of �����	 for            

     
�

�
! �����	 ! 1. 

5.   �V
~��	 � 0 when �����	 is a crisp set. 

6. �V
~��	 attain its maximum value when �����	 �

�

�
. 

Since �V
~��	  satisfies all the essential properties of 

being a measure of fuzzy entropy, it is valid measure of 
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fuzzy entropy. Different values of �V
~��	 corresponding 

to different values of �����	 are computed in the Table-

2:      
 

Table 2 

�����	 �V
~��	 

0.0 0.000000 

0.1 0.159349 

0.2 0.285773 

0.3 0.378573 

0.4 0.435609 

0.5 0.454884 

0.6 0.435609 

0.7 0.378573 

0.8 0.285773 

0.9 0.159349 

1.0 0.000000 
 

The value of �V
~��	 N�d �����	 are graphically 

represented in the Fig-2, on the next page, which shows 

that the measure introduced in equation �3.2	 satisfies 

all the properties from �1	 to �6	. 

 
Figure 2: Graph between �V~ and  �����	 

 

Normalized Fuzzy Information Entropy 

Need for Normalizing Fuzzy Information Measures 
The measure of fuzzy entropy due to De Luca and 

Termini (1.1) measures the degree of entropy among �����	, �����	, … … , �����	. The fuzzy values, that is, 

the greater the equality among, the greater the value of ���	 and thus entropy has its maximum value �*�+2 

when all the fuzzy values are equal, that is, when 

each �����	 = ��. 

Example: let us consider the following fuzzy 

distribution, �����	 = �0.4,0.4,0.4,0.4	 �����	 = �0.3,0.3,0.4,0.4,0.4	 
Then, we have following fuzzy values for �1.1	 ���	 = 2.69205  , �(�) = 3.24076 > �(�) 
 

We want to check which fuzzy distribution is more 

uniform or to which distribution the fuzzy values are 

more equal? From the values of two fuzzy entropies, it 

appears that B is more uniform than A, but still �(�) <
�(�). The fallacy arises due to the fact that the fuzzy 

entropy depends not only on the degree of equality 

among the fuzzy values; it also depends on the value of 

n. So long as n is the same, entropy can be used to 

compare the uniformity of fuzzy distributions. But, if 

the number of outcomes are different, then fuzzy 

entropy is not a satisfactory measure of uniformity. In 

that case, we try to eliminate the effect of n by 

normalizing the fuzzy entropy, which is by defining a 

normalized measure of fuzzy entropy as 

��(�) =
�(�)

max �(�) 

For De Luca and termini’s [1] measure of fuzzy 

entropy, we have 

��(�)= 0.97095, and 

��(�)= 0.93508 

Obviously,��(�) > ��(�),  

Thus, A is more uniform than B. This gives the correct 

result that B is less uniform than A. Thus, to compare 

the uniformity or equality or uncertainty of two fuzzy 

distributions, we should compare their normalized 

measures of fuzzy entropy. 
 

Normalized Measure of Fuzzy Information Entropy 

In this section, we have proposed normalized measure 

of fuzzy entropy corresponding to, 

�V(�) = −
�

∑

�
�
�
� 1

��%�� log  �� (��)'
+ 1

%1 − ��(��)'*�+ %1 − ��(��)'�
�
�
�

�
�.�

 

The maximum value of above is given by 

��V(�)��LA =
1
4 *�+

1
2 

Thus, the expression for normalized measure is given 

by 

(��V(�)) = −
�. 1

4 *�+ 1
2

∑

�
�
�
� 1

��%�� log  �� (��)'
+ 1

%1 − ��(��)'*�+ %1 − ��(��)'�
�
�
�

�
�.�

 

Proceeding on the similar way, we can obtain the 

normalized measure of fuzzy entropy corresponding to 

[3.2] as: 

(��V
~(�)) == −

�%4 − √�'

√�. ∑
�
�
�
� 1

��(��)��<>?(AB)

+ 1
%1 − ��(��)'�>?(AB) − 1

�
�
�
�

�
�.�

 

On similar lines, we can obtain maximum values for 

different fuzzy entropies and consequently developed 

many other expressions for the normalized measure of 

fuzzy entropy. 
 

Conclusion 
This work introduces two new measure of fuzzy 

entropy called fuzzy entropy corresponding to harmonic 

mean and exponential fuzzy entropy corresponding to 

harmonic mean. Some properties of these measures 

have been studied. We have also introduced the concept 

of normalized measure of fuzzy entropy is also 

introduced 
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