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1. Introduction 
The generalized gamma distribution (GGD) has been proposed by Stacy [3] as a flexible model with many applications 

in lifetime data analysis and several other fields and it has probability density function )..( fdp   in the form. 

Let  X  be a non-negative continuous random variable, then X  has a generalized gamma Distribution (GGD) with 

.)..( fdp   
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where Γ  is  gamma function, βα ,  and λ  are shape, scale and index parameters respectively. 

The GGD reduces to two- parameter Weibull distribution for  1=λ , the two parameter gamma distribution for  1=α  

and one parameter exponential distribution for 1== λα .  

In the last decades thse statistical inference on GGD has been studied extensively in the literature. Stacy and Mihram [2], 

Parr and Webter [14], harter [5], Hager and Bain [4], Prentice [12], Lawless[6,7], Ahsanullah et al. [8] and  amongest 

others. 

Characterizations based on the properties of the failure rate function have been considered by many authors. Hitha and 

Nair [10], Gupta and Kirmani [11], Hossain and Ahsanullah[13], Nanda [1]  and Nofal [9].  

Let X  be a random variable (r.v.) usually  representing the life length for a certain unit, then the r.v. )|( xXxX ≥− , 

represents the residual life of a unit with age x . The failure rate or (hazard) function, defined by 
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represents the failure rate of X  at the age x  where ( ) [ ]F x P X x= ≤  and )(xf is .)..( fdp .  

The problem of characterizations of distributions are today a substantial part of probability theory and  mathematical 

statistics. The mean residual life is applicable in biostatistics and many other actuarial sciences, engineering, economics, 

biometry, applied probability areas and developing various criteria for ageing. They also are useful in survival analysis.  

 

2. Notations 
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Before coming to the main results, some Lemmas are given which is used in Theorem. 

3. Lemmas 
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 Lemma-3.1: 
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Lemma-3.2:                              
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Lemma-3.3:          
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Lemmas can  be proved in view of Nofal [9]. 

 

4. Characterization Theorem 
Theorem 4.1: Let X  be non- negative continuous random variable then X  has a generalized gamma distribution with 

probability density function(p.d.f.) 
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If and only if  
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Proof: To prove the necessary part, we know that,       
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Integrating (4.3) by parts ,then 
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 Using Lemmas 3.1, 3.2 and 3.3, we have 
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proves the necessary part.         To prove the 

sufficiency part (4.4) can be written as, 
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 Differentiating (4.6) both sides with respect to y   
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Integrating (4.7) both side both sides with respect to y  
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Using the fact that 1)(
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Putting the value of k  in (4.8) , we have       
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Which is generaliged gamma distribution. 

Remark : Putting 1=α  in  Theorem 4.1, we get the result as obtained by  Nofal, M. Z. (2011). 
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