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Abstract: The aim of this study is to discuss the reflection and 

transmission of longitudinal wave through the imperfect boundary 

of micropolar viscoelastic solid half space and a fluid saturated 

incompressible half space. A longitudinal wave (P-wave) incident 

obliquely at the interface of half spaces. The amplitude ratios for 

reflected and transmitted waves are obtained. Then these amplitude 

ratios have been computed numerically for a particular model and 

results thus obtained are depicted graphically with angle of 

incidence of the incident wave. It is found that these amplitude 

ratios depend on angle of incidence of the incident wave as well as 

on the properties of media. The amplitude ratios are affected by the 

stiffness also. From the present study, a special case when fluid 

saturated porous half space reduces to empty porous solid is also 

deduced and discussed graphically.  

Keywords: Longitudinal wave, amplitude ratios, micropolar 

viscoelastic solid, porous, reflection, transmission, stiffness.  
 

Introduction 
Most of natural and man-made materials, including 

engineering, geological and biological media, possess a 

microstructure. The ordinary classical theory of elasticity 

fails to describe the microstructure of the material. To 

overcome this problem, Suhubi and Eringen (1964), 

Eringen and Suhubi (1964) developed a theory in which 

they considered the microstructure of the material. 

Eringen (1967) developed the linear theory of micropolar 

viscoelasticity. Many researchers like Kumar et.al. 

(1990), Singh (2000), Singh (2002), discussed the 

problems of propagation of waves in micropolar 

viscoelastic medium. Based on the work of Fillunger 

model (1913), Bowen (1980) and de Boer and Ehlers 

(1990a, 1990b) developed an interesting theory for 

porous medium having all constituents to be 

incompressible. Based on this theory, many researchers 

like de Boer and Liu (1994, 1995), de Boer and Liu 

(1996), Liu (1999), Yan et.al. (1999), de Boer and 

Didwania (2004), Tajuddin and Hussaini (2006), Kumar 

and Hundal (2007), Kumar et. al. (2011) etc. studied 

some problems of wave propagation in fluid saturated 

incompressible porous media. Elastic waves propagation 

in fluid saturated porous media has its importance in 

various fields such as soil dynamics, hydrology, 

seismology, earthquake engineering and geophysics. 

Imperfect interface considered in this problem means that 

the stress components are continuous and small 

displacement field is not. The values of the interface 

parameters depend upon the material properties of the 

medium. Recently, using the imperfect conditions at an 

interface, Chen et.al. (2004), Kumar and Rupender (2009) 

and Kumar and Chawala (2010) etc. studied the various 

types of wave problems. Using the theory of de Boer and 

Ehlers given in 1990 for fluid saturated porous medium 

and for micropolar viscoelastic solid, the theory given by 

Eringen in 1967, the reflection and transmission 

phenomenon of longitudinal wave at an imperfect 

interface between micropolar viscoelastic solid half space 

and fluid saturated porous half space is studied. A special 

case when fluid saturated porous half space reduces to 

empty porous solid has been deduced and discussed. 

Amplitudes ratios for various reflected and transmitted 

waves are computed for a particular model and depicted 

with help of graphs and discussed accordingly. The model 

which is considered here is assumed to exist in the 

oceanic crust part of the earth and the propagation of 

wave through such a model will be of great use in the 

fields which are related to earth sciences.  
 

Basic equations and Constitutive Relations 
For medium �� (micropolar viscoelastic solid) 

Following Eringen (1967), the constitutive and field 

equations for a micropolar viscoelastic solid in the 

absence of body forces and body couples, are given 

below  ��� = �	
,
��� + ��	�,� + 	�,�� + ��	�,� − ���
�
�, (1)  ��� = ��
,
��� + ���,� + ���,� , (2)  (c�� + c �)∇(∇. #) − (c�� + c �)∇ × (∇ × #) + c �∇× % = #,&  (3)  (c(� + c)�)∇(∇. %) − c(�∇ × (∇ × %) + ω*�∇ × #− +ω*�% = %& , (4) 

where 
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 c�� = (λ + 2μ)ρ ,  c�� = μρ , c � = κρ,  
 c(� = �12 ,  c)� = (α + β)ρj ,  ω*� = κρj, 
 λ = λ6 + λ76 8 ∂∂t; , μ = μ6 + μ76 8 ∂∂t;,  
 κ = κ6 + κ76 8 ∂∂t; , � = α6 + α76 8 ∂∂t;,  
 β = β6 + β76 8 ∂∂t; , γ = γ6 + γ76 8 ∂∂t;, 
 ∇= = 8 ∂∂x; + ? 8 ∂∂z; . (5) 

λ6, μ6, κ6, α6, β6, γ6, λ76, μ76, κ76, α76, β76
and γ76 are material 

constants, 1 is the density and j the rotational inertia. # 

and % are displacement and microrotation vectors 

respectively. Superposed dots on right hand side of 

equations (3) and (4) represent the second order partial 

derivative with respect to time. Take # = (u�, 0, u ) and % = (0, ��, 0) and taking the potentials ϕ(x, z, t) and ψ(x, z, t) which are related to displacement components 

are given below  

 u� = ∂ϕ∂x + ∂ψ∂z , u = ∂ϕ∂z − ∂ψ∂x . (6) 

Using the displacement components given by equation (6) 

in equations (3) and (4), we obtain 

 G∇� − 1 (c�� + c �) ∂�
∂t�H ϕ = 0, (7) 

 G∇� − 1 (c�� + c �) ∂�
∂t�H ψ − pϕ� = 0, (8) 

 G∇� − 2q − 1 c(� ∂�
∂t�H ϕ� + q∇�ψ = 0, (9) 

where   p = μμ + κ , q = κγ . (10) 

The time variation can be assumed as   ϕ(x, z, t) = ϕN(x, z) exp(iωt),  ψ(x, z, t) = ψN(x, z) exp(iωt),  ϕ�(x, z, t) = ϕN�(x, z) exp(iωt) . (11) 
Using equation (11) in equations (7) - (9), we get  R∇� + �ω�/V���U ϕN = 0, (12)  (∇( + ω�B∇� + ω(C)(ψN, ϕN�) = 0, (13) 
where 

 B = q(p − 2)ω� + 1(c�� + c �) + 1c(�,  
 C = 1(c�� + c �) 8 1c(� − 2Xω�; , (14) 

and  V� is given by the relation  V�� = c�� + c �. (15) 

For unbounded medium, the solution of equation (12) 

represents the modified longitudinal displacement wave 

(LD wave) propagating with velocity V�. 

The solution of equation (13) can be written as  

  ψN = ψN� + ψN�, (16) 

where 

 ψN� and ψN� satisfy  �∇� + δ���ψN� = 0, (17)  �∇� + δ���ψN� = 0, (18) 

and  δ�� = λ��ω�, δ�� = λ��ω�, (19) 

where λ� and λ� are give as 

 λ�� = 12 ZB + [B� − 4C\,  
 λ�� = 12 ZB − [B� − 4C\ . (20) 

From equation (8) we get ϕN� = EψN� + FψN�, 
where 

 E = 8 ω�c�� + c � − δ��;
p , F = 8 ω�c�� + c � − δ��;

p . (21) 

Thus there are two waves propagating with velocities λ�_�
 and λ�_�, each consisting of transverse displacement ψ and transverse microrotation ϕ�.According to Parfitt 

and Eringen in 1969, these waves are modified coupled 

transverse displacement wave and transverse 

microrotational waves (CD I and CD II waves) 

respectively. 
 

For medium �+ (Fluid saturated 

incompressible porous medium) 
Following de Boer and Ehlers (1990b), the governing 

equations in a fluid-saturated incompressible porous 

medium are   div(ηbcd b + ηecd e) = 0. (22)  divfgh − ηb grad p + ρb(l − c& m) − ngo = 0, (23)  divfgo − ηe grad p + ρe(l − c& e) + ngo = 0, (24) 

where cd p and c& p (i = S, F) denote the velocities and 

accelerations, respectively of solid (S) and fluid (F) 

phases of the porous aggregate and p is the effective pore 

pressure of the incompressible pore fluid. ρb and ρeare 

the densities of the solid and fluid phases respectively and 

b is the body force per unit volume. fgh and  fgo are the 

effective stress in the solid and fluid phases respectively, ngo is the effective quantity of momentum supply and  ηb 

and ηe are the volume fractions satisfying 

  ηb + ηe = 1. (27) 

If #b and #e are the displacement vectors for solid and 

fluid phases, then  xd b = #d b, c& m = #& m, cd e = #d e, c& e = #& e. (28) 
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The constitutive equations for linear isotropic, elastic 

incompressible porous medium are given by de Boer, 

Ehlers and Liu (1993) as  fgh = 2µbgb + λb(Eb. s)s, (29)  fgo = 0, (30)  ngo = −ht(#d e − #d b), (31) 

where λ
b
 and µb are the macroscopic Lame’s parameters 

of the porous solid and gb is the linearized Langrangian 

strain tensor defined as  

 gb = 12 (grad #b + gradu#b), (32) 

In the case of isotropic permeability, the tensor ht 

describing the coupled interaction between the solid and 

fluid is given by de Boer and Ehlers (1990b) as 

 ht = (ηe)�γev
Ke s, (33) 

where γev is the specific weight of the fluid and Ke is the 

Darcy’s permeability coefficient of the porous medium. 

Making the use of (28) in equations (22)-(24), and with 

the help of (29)-(32), we obtain  div(ηb#d b + ηe#d e) = 0, (34)  �λb + µb�grad div #b + µbdiv grad #b − ηbgrad p+ ρb(l − #& m) + St(#d e − #d b) = 0, (35)  − ηegrad p + ρe(l − #& e) − St(#d e − #d b) = 0. (36) 

For the two dimensional problem, we assume the 

displacement vector #p (i = F, S) as   #p = �up, 0, wp� where i = F, S. (37)  

Equations (34) - (36) with the help of eq. (37) in the 

absence of body forces take the form  

 ηb z∂�ub
∂x ∂t + ∂�wb

∂z ∂t{ + ηe z∂�ue
∂x ∂t + ∂�we

∂z ∂t { = 0, (38) 

 ηe ∂p∂x + ρe ∂�ue
∂t� + St z∂ue

∂t − ∂ub
∂t { = 0, (39) 

 ηe ∂p∂z + ρe ∂�we
∂t� + St z∂we

∂t − ∂wb
∂t { = 0, (40) 

 (λb + μb) ∂θb
∂x + μb∇�ub − ηb ∂p∂x − ρb ∂�ub

∂t�
+ St z∂ue

∂t − ∂ub
∂t { = 0, (41) 

 (λb + μb) ∂θb
∂z + μb∇�wb − ηb ∂p∂z − ρb ∂�wb

∂t�
+ St z∂we

∂t − ∂wb
∂t { = 0, (42) 

where  

 θb = ∂(ub)∂x + ∂(wb)∂z , (43) 

and 

 ∇�= ∂�
∂x� + ∂�

∂z� . (44) 

Also, the normal and tangential stresses t}}b and  t}~b 

respectively in the solid phase are as  

 t}}b = λb G∂ub
∂x + ∂wb

∂z H + 2μb ∂wb
∂z , (45) 

 t}~b = μb G∂ub
∂z + ∂wb

∂x H . (46) 

The displacement components u� and w� in terms of the 

potential ϕ� and ψ� can be written as  

 u� = ∂ϕ�
∂x + ∂ψ�

∂z , w� = ∂ϕ�
∂z − ∂ψ�

∂x , j = S, F. (47) 

Using equation (47) in equations (38)-(42), we get the 

following equations in  ϕb, ϕe,  ψb,ψe and p as 

 ∇�ϕb − 1C� ∂�ϕb
∂t� − St(λb + 2μb)(ηe)� ∂ϕb

∂t = 0, (48) 

 ϕe = − ηb
ηe ϕb, (49) 

 μb∇�ψb − ρb ∂�ψb
∂t� + St z∂ψe

∂t − ∂ψb
∂t { = 0, (50) 

 ρe ∂�ψe
∂t� + St z∂ψe

∂t − ∂ψb
∂t { = 0, (51) 

 (ηe)�p − ηbρe ∂�ϕb
∂t� − St ∂ϕb

∂t = 0, (52) 

where 

 C = � (ηe)�(λb + 2μb)(ηe)�ρb + (ηb)�ρe . (53) 

 The solution of the system of equations (48) - (52) can be 

assumed in the form given below  (ϕb, ϕe,ψb,ψe, p) = �ϕ�b, ϕ�e,ψ�b,ψ�e, p�� exp(iωt),   (54)  

where ω denotes the complex circular frequency. 

With the help of equations (54) in equations (48)-(52), we 

get 

 z∇� + ω�
C�� − iωSt(λb + 2μb)(ηe)�{ ϕ�b = 0, (55) 

 �μb∇� + ρbω� − iωSt�ψ�b = −iωStψ�e, (56)  �−ω�ρe + iωSt�ψ�e − iωStψ�b = 0, (57)  (ηe)�p� + ηbρeω�ϕ�b − iωStϕ�b = 0, (58) 

 ϕ�e = − ηb
ηe ϕ�b. (59) 

Equation (55) obtained above corresponds to the 

longitudinal wave propagating with velocity VN�, and  

   VN�� = ��� , (60) 

where 

 G� = z 1C�� − iStω(λb + 2μb)(ηe)�{ . (61) 

From equations (56) and (57), we obtain 
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 �∇� + ω�
V���ψ�b = 0, (62) 

Equation (62) corresponds to the b transverse wave 

propagating with velocityVN�, given by VN�� = 1/G� 

where 

 G� = �ρb
μb − iStμbω − St�

μb(−ρbω� + iωSt)� , (63) 

 

Formulation of the problem  
Consider a two dimensional problem by taking the z-axis 

pointing into the lower half-space and imperfect interface 

at z=0 separating the uniform micropolar viscoelastic 

solid half space mediumM� (z>0) and fluid saturated 

porous half space medium M� (z<0). A longitudinal wave 

propagating through the medium M�, incident at the plane 

z=0 and makes an angle θ* with normal to the surface. 

Corresponding to the incident longitudinal displacement 

wave, we get three reflected waves in the medium M� and 

two transmitted waves in medium M� as shown in figure 

1. 
 

 

Figure 1: Geometry of the problem 
 

For medium ��   ϕ = B* exp�ik* (x sinθ* – z cosθ* ) + iω� t�  +B� exp�ik* (x sinθ� + z cosθ� ) + iω� t�, (64)   ψ = B� exp�iδ�(x sinθ� + z cosθ� ) + iω� t�  +B  exp�iδ�(x sinθ  + z cosθ  ) + iω  t�, (65)  Φ� = EB� exp�iδ�(x sinθ� + z cosθ� ) + iω� t�  +FB  exp�iδ�(x sinθ  + z cosθ  ) + iω  t�, (66) 

In medium �+  �ϕb, ϕe, p� = �1, m�, m���A� exp�ik���x sinθ�– z cosθ��+ iω�t��, (67)  �ψb,ψe� = �1, m ��A� exp�ik���x sinθ�– z cosθ�� +iω�t��, (68) 

where 

 m� = − ηb
ηe , m� = − zηbω��ρe − iω�St(ηe)� {,  

 m = iω�Stiω�St − ω��ρe , (69) 

and B* , B� , B� , B   are amplitudes of incident P-wave, 

reflected P-wave, reflected CDI and reflected CDII waves 

respectively, A� and A� are amplitudes of transmitted P-

wave and transmitted SV-wave, respectively  
 

Boundary conditions 
Boundary conditions appropriate here are the continuity 

of displacement, micro rotation and stresses at the 

interface separating medium M� and M�. These boundary 

conditions at z=0 can be written in mathematical form as   t}} = t}}b − p, t}~ = t}~b,  m}� = 0,   t}}b − p = K�(u − wb),   t}~b = K�(u� − ub), (70) 

In order to satisfy the boundary conditions, the extension 

of the Snell’s law is  

 sinθ*V* = sinθ�V� = sinθ�λ�_� = sinθ λ�_� = sinθ�VN� = sinθ�VN� ,  
 (71) 

For longitudinal wave,  V* = V�, θ* = θ�. (72) 

Also  k*V� = δ�λ�_� = δ�λ�_� = k��VN� = k��VN� = ω, (73) 
With the help of potentials given by equations (64)-(68) 

in equations (1)-(2),(6), (45)-(47) and (67) and then using 

the boundary conditions given by equation (70) and using 

(71)-(73), we obtain a system of five non homogeneous 

which can be written as  

 � ap�
)

��*
Z� = Yp, (i = 1,2,3,4,5 ) (74) 

where 

 Z� = B�B* , Z� = B�B* , Z = B B* , Z( = A�B* , Z) = A�B* ,  
 (75) 

i.e. Z� to Z) be the amplitude ratios of reflected modified 

longitudinal displacement wave, reflected CD I wave at 

an angle θ�, reflected CD II wave at an angle θ , 
transmitted P-wave and transmitted SV-wave, 

respectively and ap� in non-dimensional form are given as 

 a�� = �λμ + 82 + κμ; cos�θ� ,  
 a�� = − 82 + κμ; δ��

k*� sinθ�cosθ�,  
 a� = − 82 + κμ; sinθ cosθ  δ��

k*� ,  
 a�( = −k����λb + 2μbcos�θ�� − m�μ k*� ,  
 a�) = −2μbk���sinθ�cosθ�μk*� , Y� = −a��, 
 a�� = 82 + κμ; sinθ�cosθ�, 
  a�� = δ��

k*� zG81 + κμ; cos�θ� − sin�θ�H + κμ Ek*�{, 
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 a� = δ��
k*� zG81 + κμ; cos�θ − sin�θ H + κμ Fk*�{,  

 a�( = μbk���sin2θ�μk*� ,  a�) = μbk����sin�θ� − cos�θ��μk*� ,  
 Y� = a��,  a � = cosθ�, a � = − δ�k* sinθ�,  
 a  = − δ�k* sinθ ,  
 a ( = k��k* cosθ� + k����λb + 2μbcos�θ�� + m�K� k* , 
 a ) = k��k* sinθ� + 2μbk���sinθ�cosθ�K� k* , Y = a �, 
 a(� = sinθ�, a(� = δ�k* cosθ�, a( = δ�k* cosθ ,  
 a(( = − k��k* sinθ� − μbk���sin2θ�K� k* , 
 a() = k��k* cosθ� − μbk����sin�θ� − cos�θ��K� k* ,  
 Y( = −a(�,  a)� = 0, a)� = cosθ�,  
 a) = Fδ�Eδ� cosθ ,  a)( = 0, a)) = 0,  
 ¡) = 0. (76) 
 

Particular Cases 
Case I Normal force stiffness (K� ≠ 0, K� → ∞) 

In this case, we get a system of four non homogeneous 

equations as in given by equation (74) with some ap� 
changed as  

 a ( = k��k* cosθ�,  a ) = k��k* sinθ� (77) 

Case II Transverse force stiffness (K� ≠ 0, K� → ∞) 

In this case, a system of four non homogeneous equations 

as those given by equation (74) is obtained but some ap� 
changed as  

 a(( = − k��k* sinθ� a() = k��k* cosθ� (78) 

Case III: Welded contact (K� → ∞, K� → ∞) 

Again in this case, a system of four non homogeneous 

equations is obtained as in equation (74) with some ap� 
changed as  

 a ( = k��k* cosθ�,  a ) = k��k* sinθ�, 
 a(( = − k��k* sinθ� a() = k��k* cosθ�, (79) 

Special case 

If pores are absent or gas is filled in the pores then ρe is 

very small as compared to ρb and can be neglected, so the 

relation (53) gives us  

 C = �λb + 2µb
ρb . (80) 

and the coefficients a�(, and a ( in (76) changes to  

 a�( = −k����λb + 2μbcos�θ��μ k*� ,  
 a ( = k��k* cosθ� + k����λb + 2μbcos�θ��K� k*  

and the remaining coefficients in (76) remain same. In 

this situation the problem reduces to the problem of 

empty porous solid half space lying over micropolar 

viscoelastic solid half space.  
 

Numerical Results and Discussion 
The theoretical results obtained above indicate that the 

amplitude ratios Zp (i = 1,2,3,4,5 ) depend on the angle 

of incidence of incident wave and material properties of 

half spaces. In order to study in more detail the behaviour 

of various amplitude ratios, we have computed them 

numerically for a particular model for which the values of 

various physical parameters are as under  

In medium M�, the physical parameters for micropolar 

viscoelastic solid are taken from Gauthier (1982) as   λ6 = 7.59 × 10�� dyne/cm�,   μ6 = 1.89 × 10�� dyne/cm�,   κ6 = 0.0149 × 10��dyne/cm�,  ρ = 2.19gm/cm , 
 λ = λ6 R1 + ¥¦�U , μ = μ6 R1 + ¥¦§U,  
 κ = κ6  81 + iQ ; , γ = γ6 81 + iQ(; , (80) 

where the quality factors Qp(i = 1,2,3,4) are taken 

arbitrarily as   Q� = 5, Q� = 10, Q = 15, Q( = 13. 
In mediumM�, the physical constants for fluid saturated 

incompressible porous medium are taken from de Boer, 

Ehlers and Liu (1993) as  ηm = 0.67, ηe = 0.33, ρm = 1.34 Mg/m ,   ρe = 0.33 Mg/m , λm = 5.5833 MN/m�, 
Ke = 0.01ms , γev = 10.00KNm ,  
 μm = 8.3750Nm� . (81)  
A computer programme in MATLAB has been developed 

to calculate the modulus of amplitude ratios of various 

reflected and transmitted waves for the particular model 

and to depict graphically. In figures (2) - (6) solid lines 

show the variations of amplitude ratios when medium-I is 

micropolar viscoelastic solid (MVES) and medium-II is 

incompressible fluid saturated porous medium (FS) 

whereas dashed lines show the variations of amplitude 

ratios when medium-II becomes incompressible empty 
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porous solid (EPS). Figures (2) - (6) indicates the effect 

of pores fluid.  

Longitudinal displacement wave incidence  

In all the figures (2)-(16), dashed dotted line signifies the 

general stiffness case, whereas dashed line depict the case 

of transverse force stiffness. Also double dashed line 

represents normal force stiffness case and solid line 

shows the welded contact case. Figures (2)-(5) show the 

variations of the amplitude ratios of reflected P-wave, 

reflected CDI-wave, reflected CDII-wave, transmitted P-

wave and transmitted SV-wave with angle of incidence of 

incident P-wave. The behaviour of all these distribution 

curves is similar i.e. increasing from normal incidence to 

maximum value and then decreasing from maximum 

value to grazing incidence except the figure (5). The 

values of all amplitude ratios corresponding to reflected 

waves in figures (2)-(4) in all the stiffness cases are same. 

But in case of amplitude ratios corresponding to 

transmitted waves in figures (5)-(6), transverse force 

stiffness values are small than all other stiffness cases. 

Figures (7)-(11) depict the variations of the amplitude 

ratios |«¬| with angle of incidence of the incident P wave 

in case when medium M� becomes elastic solid half 

space. The behaviour of curves in figures (7)-(9) is same 

as in figures(2)-(4) and behaviour of curves in figures 

(10)-(11) is same as in figures(5)-(6).The effect of 

viscosity of viscoelastic solid is not significant if we 

compare the values of corresponding amplitude ratio in 

figures (2)-(6) and (7)-(11). Figures (12)-(16) show the 

variations of the amplitude ratios |«¬| with angle of 

incidence of the incident P wave when medium M� is 

empty porous solid. The effect of fluid filled in the pores 

of fluid saturated porous medium is significant by 

comparing the values of corresponding amplitude ratio in 

figures (2)-(6) and (12)-(16). In figures (12)-(14) no 

effect of stiffness is seen in case of amplitude ratios of 

reflected waves. Effect of stiffness is clear in figures (15)-

(16).  
 

Conclusion 
In conclusion, a mathematical study of reflection and 

refraction coefficients at an interface separating 

micropolar viscoelastic solid half space and fluid 

saturated incompressible porous half space is made when 

longitudinal wave is incident. It is observed that the 

amplitudes ratios of various reflected and transmitted 

waves depend on the angle of incidence of the incident 

wave and material properties of half spaces. The effect of 

fluid filled in the pores of incompressible fluid saturated 

porous medium is significant on the amplitudes ratios the 

effect of viscosity of viscoelastic solid is not significant. 

The model presented in this paper is one of the more 

realistic forms of the earth models. It may be of some use 

in engineering, seismology and geophysics etc.  

 

 
Figure 2-6: Variation of the amplitude ratios of reflected P-wave, 

reflected CDI-wave, reflected CDII-wave, transmitted P-wave and 

transmitted SV-wave with angle of incidence of longitudinal 

displacement wave 
 

 
Figure 7-11: Variation of the amplitude ratios of reflected P-wave, 

reflected CDI-wave, reflected CDII-wave, transmitted P-wave and 

transmitted SV-wave with angle of incidence of longitudinal 

displacement wave in case of elastic solid 
 

 
Figure 12-16: Variation of the amplitude ratios of reflected P-

wave, reflected CDI-wave, reflected CDII-wave, transmitted P-

wave and transmitted SV-wave with angle of incidence of 

longitudinal displacement wave in case of empty porous solid 
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