Rings with \((x, R, x)\) in the Left Nucleus

K. Jayalakshmi\(^1\)*, S. Madhavi Latha\(^2\)**

\(^1\)Department of Mathematics, JNTUA College of Engineering, JNTUA University, Ananthapuramu, Andhra Pradesh, INDIA.
\(^2\)Department of Sciences and Humanities, C. V. Raman Institute of Technology, Tadipatri, Ananthapuramu, Andhra Pradesh, INDIA.

Abstract

If \(N_i\) and \(N_j\) be the Lie ideals of a nonassociative ring \(R\), then \([N_i, R] \subseteq N_i\) and \([N_j, R] \subseteq N_j\). Also if \((x, R, x)\) is in the left nucleus then \(N_i[R, R] \subseteq N_i\). If \(R\) is a prime ring with \(N_i \neq 0\), and \((x, R, x)\) in the left nucleus then \(R\) is either associative or commutative.

Key Word: Nonassociative ring, Left nucleus, Right nucleus, Lie ideals, Associator ideal.

Address for Correspondence:

Dr. K. Jayalakshmi, Department of Mathematics, JNTUA College of Engineering, JNTUA University, Ananthapuramu, Andhra Pradesh, INDIA.

Email: kjay.maths@jntua.ac.in, madhavilathashettipalli@gmail.com

Received Date: 28/07/2014 **Accepted Date:** 05/08/2014

INTRODUCTION

Kleinfeld [1] studied nonassociative rings with \((x, R, x)\) and \([R, R]\) in the left nucleus. Yen [2] considered the rings with the weaker hypothesis that is, rings with \((x, R, x)\) and \([N_i, R]\) in the left nucleus and proved that if \(R\) is a semiprime ring, then \(N_i = N_j\). He also proved that if \(R\) is a prime ring with \(N_i \neq 0\) satisfying one additional condition \(N_i[R, R] \subseteq N_i\), then \(R\) is either associative or commutative. In this paper by considering \(N_i\) and \(N_j\) as the Lie ideals of a ring \(R\), we present some properties of \(R\) with \((x, R, x)\) in the left nucleus. Using these properties, we show that \(N_i[R, R] \subseteq N_i\). Also we prove that, if \(R\) is a prime ring with \(N_i \neq 0\), then \(R\) is either associative or commutative.

PRILIMENARIES

In a nonassociative ring \(R\) we define an associator as \((x, y, z) = (xy)z - x(yz)\) and the commutator as \([x, y] = xy - yx\) for all \(x, y, z \in R\). To make the notation more convenient we often use \(\cdot\) to indicate multiplication as well as juxtaposition. In products, juxtaposition takes precedence, i.e., \(xy \cdot z = (xy)z\). The nucleus of a ring \(R\) is defined as \(N = \{n \in R / (n, R, R) = (R, n, R) = (R, R, n) = 0\}\), the right nucleus as \(N_r = \{n \in R / (R, R, n) = 0\}\) and the left nucleus as \(N_l = \{n \in R / (n, R, R) = 0\}\). A ring \(R\) is said to be prime if whenever \(A\) and \(B\) are ideals of \(R\) such that \(AB = 0\), then either \(A = 0\) or \(B = 0\) and is said to be semiprime if for any ideal \(A\) of \(R\), \(A^2 = 0\) implies \(A = 0\). These rings are also referred to as rings free from trivial ideals. And a ring is said to be simple if whenever \(A\) is an ideal of \(R\), then either \(A = R\) or \(A = 0\).

Let \(R\) be a nonassociative ring satisfying \((x, R, x) \subseteq N_i\), that is,

\[(x, y, z) + (z, y, x) \in N_i\] \hspace{1cm} (1)

Let \(N_i\) and \(N_j\) be the Lie ideals of \(R\). Then

\([N_i, R] \subseteq N_i\] \hspace{1cm} (2)

\([N_j, R] \subseteq N_j\]
We use Teichmuller identity which is valid in any arbitrary ring.

\[(wx, y, z) - (w, xy, z) + (w, x, yz) - w(x, y, z) - (w, x, y) z = 0, \quad (3)\]

for all, \(w, x, y, z \in R \).

Then with \(w = n \in N_l \) in (3), we obtain

\[(nx, y, z) = n(x, y, z). \quad (4)\]

Since \(N_l \) is the Lie ideal from (2), we obtain

\[(nx, y, z) = n(x, y, z) = (xn, y, z), \quad (4)\]

for all, \(n \in N_l \).

Thus \(N_l \) is the associative subring of \(R \).

MAIN SECTION

Lemma 3.1: Let \(T = \{ t \in N_l; t(R, R, R) = 0 \} \), then \(T \) is an ideal of \(R \).

Proof: In (4) substituting \(n = t \), we obtain

\[(tx, y, z) = t(x, y, z) = (xt, y, z) = 0. \quad (5)\]

Thus \(tR \subset N_l \) and \(Rt \subset N_l \).

Also, \(tw \cdot (x, y, z) = t \cdot w(x, y, z) \).

Multiplying (3) with \(t \) on the left side, we obtain

\[t \cdot w(x, y, z) = -t \cdot (w, x, y)z \]

\[= -t (w, x, y) \cdot z \]

\[= 0. \]

Hence \(tw \cdot (x, y, z) = 0 \). Thus \(TR \subseteq T \).

Now using \(TR \subseteq T \), (2), (4), \(RT \subset N_l \) and (1), we obtain

\[wt \cdot (x, y, z) = [w, t] (x, y, z) \]

\[= ([w, t]x, y, z) \]

\[= ((wt)x, y, z) - ((tw)x, y, z) \]

\[= ((wt), y, z) + (x(wt), y, z) - (t(wx), y, z) \]

\[= ([wt], y, z) + (x(wt), y, z) \]

\[= -((x, w, t), y, z) + ((xw)t, y, z) \]

\[= -((x, w, t) + (t, w, x), y, z) \]

\[= 0. \]

Hence \(RT \subseteq T \). Thus \(T \) is an ideal of \(R \). From the definition of \(T \), we obtain \(T(R, R, R) = 0 \).

This completes the proof of the Lemma.

Let \(A \) be the associator ideal of \(R \). We assume that \(R \) satisfies (1) and also \(R \) is semiprime. Using Lemma 3.1 and equation (3), we obtain \(T \cdot A = 0 \) and hence \((T \cap A)^2 = 0 \). Thus we have \(T \cap A = 0 \) and \(A \cdot T = 0 \).

From Lemma 3.1 and equation (3), we obtain

\[(R, T, R) = 0. \quad (6)\]

Lemma 3.2: Let \(R \) be a nonassociative ring satisfying \((x, y, z) + (z, y, x) \in N_l \). Then \((R, R, N_l) = 0 \).

Proof: Let \(n \in N_l \), then from (1), we obtain

\[(x, y, n) = (x, y, n) + (n, y, x) \in N_l. \]

Also from (3), we obtain

\[z (x, y, n) = (zx, y, n) - (z, xy, n) + (z, x, yn) - (z, x, y)n.\]

Hence using these, (4) and (1), we obtain

\[(x, y, n)(z, r, s) = (zx, y, n), r, s \]

\[= ((zx, y, n), r, s) - ((z, xy, n), r, s) + ((z, x, yn), r, s) - ((z, x, y)n, r, s) \]

\[= (z, x, yn), r, s) - ((z, x, y)n, r, s) \]

\[= -((yn, x, z), r, s) - (n(z, x, y)), r, s) \]

\[= -((n(y, x, z), r, s) - n((z, x, y), r, s) \]

\[= -n((y, x, z), r, s) - n((z, x, y), r, s) \]

\[= -n((y, x, z) + (z, x, y), r, s) \]

\[= 0. \]

Hence \((x, y, n) \in T. \)
Since \((x, y, n)\) is also an associator, it is also in \(A\).

Thus from (5), we obtain \((x, y, n) = 0\).

Hence \((R, R, N_r) = 0\).

From Lemma 3.2, we obtain \(N_l \subseteq N_r\).

Let \(n \in N_r\). Then with \(z = n\) in (3), we obtain
\[(w, x, yn) = (w, x, y)n \text{ for all } n \in N_r \text{ and } w, x, y \in R.\] \hfill (8)

Lemma 3.3: Let \(N_l\) be the Lie ideal of \(R\) and let
\[S = \{n \in N_r: (R, R, R)n = 0\}, \text{ then } S \text{ is an ideal of } R, (R, R, R)S = 0, S \cap A = 0, S \cdot A = A \cdot S = 0 \text{ and } T \subseteq S.\]

Proof: Using (1), (3), (5), (7) and (8) and the proof of Lemma 3.1, this Lemma is proved.

Lemma 3.4: If \(N_l\) and \(N_r\) are the Lie ideals of \(R\), then \(N_r = N_l\) and \(S = T\).

Proof: Let us assume that \((R, R, n) = 0\), then from (1), we obtain
\[(n, x, y) = (n, y, x) + (y, x, n) \in N_r.\]

Now using (1), (7), (8) and \([N_r, R] \subseteq N_r\) and since \(N_r\) is an associative subring of \(R\), we obtain
\[(n, y, z) - n(x, y, z) = \{(nx, y, z) + (z, y, nx)\} - n((x, y, z) + (z, y, x)) + [n, (z, y, x)] \in N_r.\]

From the above equation and \((n, R, R) \subseteq N_l \subseteq N_r\) and with \(w = n\) in (3), we obtain
\[(n, x, y)z = \{(nx, y, z) - n(x, y, z)\} - n(xy, z) + (n, x, yz) \in N_r.\]

Hence using this and (8), we obtain
\[(s, r, z) (n, x, y) = (s, r, (n, x, y)z) = 0, \text{ which shows that } (n, x, y) \in S \cap A \text{ and thus from } 3.3, \text{ we have } (n, x, y) = 0.\]

Hence \(N_r \subseteq N_l\). Thus from (7), we have \(N_r = N_l\). From Lemma 3.3 again, \(S \cdot A = 0\) and so \(S = T\). This completes the proof of the Lemma.

Theorem 3.1: If \(R\) is a semiprime ring satisfying \((x, y, z) + (z, y, x) \in N_r\), where \(N_r\) is the Lie ideal of \(R\), then \(T\) is an ideal of \(R\) and \((N_r, R) = R, (R, R)N_r = 0\). Also, if \([N_r, R] \subseteq N_r\), then \(N_r = N_l\) and \(S = T \subseteq N\).

Proof: From (6) and Lemmas 3.1, 3.2, 3.3 and 3.4 the Theorem is proved.

Lemma 2.5: Let \(I = \{a \in R : N_l \cdot a = 0\}\), then \(I\) is an ideal of \(R\).

Proof: First we show that \((R, R, R) \subseteq I\). By taking \(y = z = x\) in (1), we obtain
\[(x, x, x) + (x, x, x) = 2(x, x, x) \in N_l.\]

So \((x, x, x) \in N_l\).

Let \(S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y)\).

Now linearization of \((x, x, x)\) gives \((x, y, z) + (y, z, x) + (z, x, y) + (x, y, z) + (z, y, x) + (x, z, y) + (x, z, y) \in N_l.\)

i.e., \(S(x, y, z) + S(y, x, z) \in N_l\).

We have \(D(x, y, z) = [xy, z] - x[y, z] - [x, z]y - (x, y, z) - (z, x, y) + (z, x, y) = 0.\)

This identity is valid in any arbitrary ring.

Now \(D(x, y, z) - D(y, x, z)\) gives
\[[x, y, z] + [y, z, x] + [z, x, y] = S(x, y, z) - S(y, x, z).\]

If \(z \in N_l\), we obtain \(S(x, y, z) \in N_l.\)

But from (9), \(S(x, y, z) \in N_l.\)

i.e., \(2S(x, y, z) \in N_l.\)

i.e., \(S(x, y, z) \in N_l.\)

i.e., \((x, y, z) + (y, z, x) + (z, x, y) \in N_l.\)

But \((x, x, x) \in N_l\) implies \((x, x, x) \in N_l.\)

i.e., \((R, N_l, R) \subseteq N_l.\) implies \((R, N_l, R) = (R, N_l, R) = 0.\)

Now in (10) substituting \(x = n\) and forming the associators with \(r, s\) and using (12), we obtain
\[(ln, y, z, r, s) + ((n, y, z) r, s) + ((n, z, y) r, s) + ((z, n, y) r, s) - (n, z, y, r, s) = (n, y, z) r, s) + ((n, z, y) r, s) + ((z, n, y) r, s).

i.e., \((N_l[R, R], R, R) = ([N_l[R, R], R, R] - ([N_l, R, R], R, R)\)
Thus \(N_i([R, R], R, R) = (N_iR, R, R) = 0 \) from (12).

Now let \(a \in I, n \in N_i \) and \(x, y, z, w \in R \). Thus we obtain
\[
n(ax) = (na)x = 0 \text{ implies } IR \subseteq I.
\]

Now from (13), we obtain
\[
n(xa) = n[x, a] \in N_i.
\]

Since \(na = 0 \) and \(n \in N_i \), we obtain \(n(a, x, y) = 0 \).

Using (15), (1) and since \(N_i \) is an associative subring of \(R \), we obtain
\[
n((y)x)a - n(y(xa)) = n(y, x, a)
\]
\[
= n((a, x, y) + (y, x, a)) \in N_i.
\]

Applying (16) and \(n(xa) \in N_i \), we obtain
\[
n(y(xa)) \in N_i
\]

Using (17) and (13), we obtain
\[
(n(xa))y = n((xa)y)
\]
\[
= n[xa, y] + n(y(xa)) \in N_i.
\]

Combining the above with \(n(xa) \in N_i \), we obtain
\[
n(xa)(y, z, w) = ((n(xa))y, z, w)
\]
\[
= 0.
\]

Hence \(n(xa) \in T \) and thus \(n(xa) = 0 \) implies \(RI \subseteq I \).

Therefore \(I \) is an ideal of \(R \) and thus \(NI = 0 \).

Theorem 3.2: If \(N_i \) is the Lie ideal of a prime ring \(R \) with \(N_i \neq 0 \) and satisfying \((y, x, z) + (z, y, x) \in N_i \), then \(R \) is either associative or commutative.

Proof: Since \(R \) is prime using (5), we obtain either \(A = 0 \) or \(T = 0 \). If \(A = 0 \), then \(R \) is associative. Hence we assume that \(T = 0 \). Since \(N_i \) is the Lie ideal of \(R \), using Lemma 3.2, we see that the ideal of \(R \) generated by \(N_i \) is \(N_i + N_iR \). Then \(NI = 0 \) from Lemma 3.5. Hence we obtain
\[
(N_i + N_iR)I \subseteq N_iI + (N_iR)I
\]
\[
= N_iI + (N_i, R, I) + N_i(RI)
\]
\[
\subseteq N_iI + N_i(RI)
\]
\[
= 0.
\]

Thus \([R, R] \subseteq N_i \). Now \(R \) satisfies Kleinfeld’s hypothesis [1]. Hence it follows that \(R \) is either associative or commutative. This completes the proof of the Theorem.

REFERENCES