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INTRODUCTION
Let {X,,,n = 1} be a sequence of independent random variables. For each integer n = 1, let the distribution function
ofX;, be either F; or F, where F; and F, are two specified d.f ‘s. The number of r.v’s with d.f F; among X3, X5 ... ... ... Xy

is tj(n)where
t; and t, are specified positive integers (assumed non-random) with t;(n) + t,(n) = nand t;(n) - co,n > 0 j = 1,2.

1-Fj(x)
Let Fj(x) have a density f;(x) which is positive for large x and for such x put g;(x) = (f%loglog (1 Fl (x)) j=
—Fj

j X
1,2.
LetY, = max ( X1, X3 - cen o Xp). Note that ¥, = max ( Yy, Y2 ,) where Y}, is the
maximum of t;(n) observations that follow the law F;. Define b;(n) by
1,
1-F (bj(n)) =2 j=12

If lim, ng(x) =¢ (0 <S¢ < oo), j = 1,2, then by De Haan and Hordijk (1972) we have the following results.

. Y]',n _ Ci
lim,,_,., sup b ) e as (1.1)
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lim,,_, inf =1las. (1.2)

b; (t, )
where for all x > 0,

(logt () in™
F; (b; (t (n, x)) = (1.3)
and for all x > 0,
lim,,_., 75,0 (X) = —"’%. (1.4)

Let ny, = [exp k"] where h>1. Then by Husler, J. (1985) we have the following theorem.
Theorem 1.1

. _1 . 9;(x) Yjmy cci
(Husler, J., 1985): Let ¢ = o If hmn_m—x =g (0 <¢< oo) j =1,2. then lim,,_,, SUp ) = e as and
. . y]'.nk _
lim,,_,, inf B 1a.s.

Yon
b1(t1(n)) b, (t2(n)
the limit set of the above random vector overn,. Some more related results on limit point may be found in Nayak, S.S
(1985), Hebbar, H.V.(1980) and Wichuna (1974). Throughout the paper, the letter D with a suffix denotes a positive

constant which may have different values in different appearances. “Infinitely often” is denoted by i. o.

Nayak. S.S (1986) obtained the almost sure limit set of properly normalized ( ) In this paper, we obtain

PRELIMINARIES
Lemma 2.1: Let {x,,n = 1} be a sequence of real numbers such that lim,,_,,, nx,, =0
Then If lim,, ., =" — 1,

n

Proof: Using Binomial theorem we have
n

1= (=" = ) (1) (-1
r=1
=y (‘1:! o) (1-2)(1-2) e (1-22)

1| ——>0asn—>oo
Xn Xn

Lemma 2.2 (Ortega and Wschebor, 1984): Let {A,,,n = 1} be a sequence of events. If
(1) ¥ P(A,) = ©wand

P(A; N A,) — P(A)(A
(i) lim infz Z (4 0 A) ~ PN _ 0 then P(A, i.0.) = 1.
o 1<j <ksn '=1P(Aj)]

LIMIT POINTS

Theorem 3.1: Assume that lim,,_, o, —— Gi) (0 <a < 1)] =12 and
lim,,_, g’i ) G (0 <¢ < oo) Jj = 1,2. Then the set of all almost sure limit points of
Yy Y2y : — . cc cc, logx | logy _1 — h
(bl(tl(nk))'bz(tz(nk))) isS = {(x,y). 1<x<e“,1<y< e, . + . < c} where ¢ = - and n, = [expk™], h>1.
The proof of the theorem depends on the following two lemmas.
Lemma 3.1: Assume the conditions of theorem 3.1. For all € > 0 and x, y satisfying 1 < x < e®1,1 <y < e“z,locﬂ +
1
locgy < ¢ we have
2
P(x L<x+sy— Y2—<y+£lo) 1)
by (t1(n)) l b, (t2 ()
Proof: Let
Yin Yom
E ={x <——* <x4gy—e<—2F < +£}
¢ b, (62 (1) RN TCTCI) I

Note that P(E}) is an increasing function of €. Hence it is enough to prove that
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logx lo
logx | logy
C1 C2

P(Ey i.0)=1 for 0 < ¢ < min(x,y) wherel < x < e‘1,1 <y < e‘zand
independent, we have P(Ey) = P (A1, (x)P (A2, (¥)) where

Aj(x) = {ajk(x —&) <Y, <ap(x+ e)} and aj, (x) = b; (tj(nk)) x.j=1,2.
By (1.3) and (1.4) and the fact that lim,_,,, 2%

ng
tj{l - F}-(ajk(x)} — 0 as k - o .Hence by Lemma 2.1,
1= B9 (5 (0) ~;Gu){1 = Fy (@)} ke > o
Hence as k — oo, we have
1-— Fltl("")(alk(x +8) 1-F(ayx+e)
1-— Fltl(n")(alk(x — e)) 1-— Fl(alk(x - e))
~(logty () i+ rim =2
~(lognk)rlnk(x+s)_“"k (x-¢)
- 0ask — .
This gives ,
P(Ax(x)) = F1t1(nk)(a1k(x + 5)) - F1t1(nk)(a1k(x - 5))
=1- Flti("k)(alk(x —&)—{1- Fltl(n")(alk(x +9)}
~1-— Fltl("")(alk(x —¢&))ask > o
~t1(nk){1 - Fl(alk(x - s))} as k — oo (by lemma 2.1)
= (logty (n))
~ (logn) ™"~ as k - oo,
Similarly P(A,, () ~(logn;)2" ¥~ as k — oo,

rlnk(x—£)+r2nk(y_5)

< c.since Yy ,, and Y, are

=a;(0 < a; < 1) it follows that

Hence we have P(E}) ~ (logny) as k — oo,

> pic e est o toso el co g s g,
Where 0 < g; < % - C—lllog(x —&)— élog(y — €). Hence
2k P(Ey) = © (3.1)
Let u and v be two large positive integers such that u < v and aj,, (x) > 0 and
aj,(x) > 0,x > 1. We have
P(E, NE,) = P(A;(w,v,x))P(4A: (v, v,y))
where
Aj(u,v,x) {alu(x —&) <Y, <ap(x+8)a,(x —¢) <V, <ap(x+ e)},j=1,2.
Now
P(Ay(u,v,x)) =
P(alu(x -8 < Ylnu < alu(x + g)lalv(x —¢&) < max(Ylnu'an—nu) < alv(x + S))
where Yy, _, is the maximum of t; (n,,) — t,(n,) observations from F;.
Note that ¥;,, and Y;,, _p are independent .
LetA = {alu(x —&) <Vip, <ap(x+ s)}
and B = { arp(x — &) <max (Yin,, Yin,—n,) < @1 (x + s)}.
Then B = ({Ymu > a1y (X — &), Yin,—n, < A1p(x — s)} U {Ymu < ap(x =€), Yin,—n, > a1p(x — e)} U {Ymu >
alv(x —e), Yln,,—nu > alv(x - S)} n {Ylnu < alv(x + ), Yln,,—nu < alv(x + S)})
= {alv(x —e)< Ylnu < ap(x + S)'Yln,,—nu < ag,(x - ‘9)}
U {Ylnu < alv(x - ‘9): alv(x - ‘9) < Yln,,—nu = alv(x + ‘9)}
U { A1y (x — &) <Vip, < agp(x+€), app(x— &) <VYip,_p, < ap(x+ e)}
= B; U B, U B3 say.
Then A, (u,v,x) = P(ANB)
=P(ANn (ByUB,UBy))
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=P(C1UC2UC3)

WhereC1 = AﬂBl,CZ =AnBzandC3 =AﬂB3

Note that C; N C, =@ C, N C3 = @ and C; N C3 = @. Hence

P(A1(w,v,x)) = P(C)) + P(C;) + P(C5)

=P (alv(x —&) < Yin, < ar,(x + S)) P (Yln,,—nu <ap(x— S))+

P (alu(x —&) < Yin, < min(alu(x +¢€),a,(x — s))) P (Yln,,—nu > aq,(x — s))+
P (al,,(x —&) <Yy, < agu(x+ e)) P (Yln,,—nu > aq,(x— s))

<P (al,,(x —&) <VYip, <a(x+ s)) +

P (alu(x —&) <VYip, < ag(x+ s)) P (Yln,,—nu > aq,(x — e)).

Now P (al,,(x —&) <VYip, <ap(x+ s))

= 1—F1t1(n“)(a1,,(x - s))—(l—Fltl(n“)(aw(x +8))).

Consider

1—F1t1(nu)(a1,,(x+s)) 1A (arp(x+8))
1—F1t1(nu)(a1,,(x—s)) 1-F (a14(x-2))
= (logn,)"w&*+8=Tm,(x=8) _ 0 a5 u,v— oo from (1.3) and (1.4).

Thus as u,v—= oo, P (aw(x — &) <Yip, < ap(x+ e)) ~1-Flt1(n”)(a1,,(x — s))

~t,(ny,) (1 -F (al,,(x - s)))by lemma 2.1. (3.2)
Also P (alu (x — &) <Yip, < ag,(x+ s)) = Fltl("”)(alu(x +e)) - F,t () (a1 (x —9))

=1- Flti("u)(alu(x — e)) - (1 - Fltl(n“)(alu(x + s)))

~ty(n){1 - F(a;,(x —€))},u > o (3.3)

1_F1(a1u(x+£)) — T1ny, (x+&)-T1y(x—8)
1—F1(a1u(X—£)) a (logtl (nu)) ' = 0,u= e,

Note that as u,v— o,

as u,v— o by lemma 2.1.

since

tl(nu) - n_uS ny ~euh—(u+1)h < 1
ti(ny) My T My (u+ 1D —uh
~——=->0ash>1.
huh-1
This gives, {t;(n,) — ty (M) H1 — Frag, (x — )} = 2022000 (5 0 5 yriw@-e)
g 9

tl(nv)
- 0 as u,v— oo from (1.3) and (1.4).
Hence by lemma 2.1, we have u,v— oo,

P (Y1n,,—nu > ay,(x — 5)) =1- F1t1(n”)_t1(nu)(a1v(x - )

~ t;(ny){1 — Fia3,(x — &)} (3.4)
From (3.2), (3.3) and (3.4) we have

P(a1p(x=8)<Vin,<a1p(x+e)
P(ayy(x—€)<V1ny, <10 (x+E)P(Y1ny—n, >a1p(x—8))
_ 1
- GE-Fia o)
_ t1(ny
= o Gogtmgreee rom (1.3).

Ny

1y (logny) 1u =2

< D,

~

! —hlog(x—s)_‘E
{w+Dh—ul}u @ '

Copyright © 2014, Statperson Publications, linternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 12 Issue 1 2014



S S Nayak, Varalaxmi T Shedole

1

<D -
Y e hlogx=9)_,,
u 1

- 0asuv— ©

WhereO<£1<l(h—1)—w h_logx-s)

andl>m

1 C1

Hence for €, > 0 and large u and v we have

P(A1(w,v,%)) < (1 + &)t1(ny)t; (n,)){1 — Frag, (x — )H{1 — Fiay,(x — €)}

Similarly for large u and v we have

P(A;(w,v,y)) < (1 + &)t1 ()t (n,){1 — Fra1,(y — )H1 — Foay,(y — €)}

Hence P(E, N E,)~P(E,)P(E,) for large u and v . This implies

PADA)PUNA 6 thon P(A, i.0.) = 1. 3.5)
[27:1[’(‘4])]

From (3.1) and (3.5) and lemma 2.2, we have

Hence P(Ey,i,0) =1

Lemma 3.2 : For all € > 0 and all (x, y) such that

logx lo
1<x<e‘r)1 <y<e“2,ci+%20,wehave
1

2
P(Y > (x + e)bl(tl(nk)),Yz,nk > (y+ e)bz(tz (nk))i. o) =0
where ¢ = % .
Proof : we have P (Yl,nk >(x+¢&)b (tl (), Yo, > (v + )b, (t, (nk)))
- (lognk)Tlnk(x+s)+r2nk(y+£)

. khrlnk (x+e)+hron, (y+e)

limn—)oo lnfz 1<j ZSRSn

_[log (x+e) log (y+&)
<kh[ aa T oo 83]’k2k2
log (x+¢ lo +¢& 1
where 0 < &3 < gi ) 4 giy )_E'
2

1
Hence }; P (Jﬁ,nk > (x + S)b1(t1(nk)):}’2,nk >+ f)bz(tz(nk))) < .
By Borel -Cantilli Leema the proof is complete.
Proof of theorem 3.1:
From theorem 1.1 and lemma 3.2, it follows that the limit set is contained in S. From
Lemma 3.1, we get that every point of
§* = {1 <x<e“11<y< e“Z,loCﬂ + locﬂ < c} is a limit point. By continuity

1 2

Considerations, we get that S is the required limit set.

Corollary 3.1: Under the conditions of theorem 3.1, every point of [1,e¢“/] is a point of

Y:
— L _j=12

b; (tj (nk))
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