Exploring the Political Situation in Nigeria (2011) elections using Correspondence Analysis for Categorical Data

Anyiam Kizito E¹, Nworuh G E², Uchegbulem-Asiegbu Nwaoma P³

^{1,2}Department of Information Management Technology, Federal University of Technology, Owerri (FUTO), NIGERIA. ³Department of Statistics, Imo State Polytechnic, Umuagwo, Owerri, NIGERIA. **Email:** <u>kizitondon@yahoo.com</u>

Abstract

Correspondence analysis is an exploratory technique related to to principal components analysis which finds a multidimensional representation of the association between the row and column categories of a two-way contingency table. This technique finds scores for the row and column categories on a small number of dimensions which account for the greatest proportion of the chi² for association between the row and column categories, just as principal components account for maximum variance. Empirical investigation is carried out using discrete data collected categorically. Graphical display of two or three dimensions are typically used to give a reduced rank approximation to the data.

Keywords: Discete Categorical data, Chi-square distances, correspondence matrix, profiles, masses and centroids

*Address for Correspondence:

Dr. Anyiam Kizito E, Department of Information Management Technology, Federal University of Technology, Owerri (FUTO), NIGERIA.

Email: <u>kizitondon@yahoo.com</u> Received Date: 01/10/2014 Accepted Date: 10/10/2014

INTRODUCTION

Correspondence analysis (CA) has proved to be very popular in research areas where large sets of discrete categorical data are collected, in particular linguistics (Haassal and ganesh,1996, Romney et al., 1997 and Greenacre,2007), ecology (Hoffman and Franke, 1986), archeology, marketing research, the social sciences (Terr Break, 1985, Fellenberg et al., 2001), healthcare and nursing studies (Javalgi et al., 1992, Watts, 1997), environmental management (Kishino et al.,1998) and genomics. Technically, correspondence analysis falls into the class of classical multivariate statistical methods of dimensions reduction based on the singular value decomposition. One of the benefits of CA is that it can simplify complex data from a potentially large table into a simpler display of categorical variables while preserving all of the valuable information in the data set. This is especially valuable when it would be inappropriate to use a table to display the data because the associations between variables would not be apparent due to the size of the table. The aim of this paper has been to discuss new developments of correspondence analysis for the application to discrete categorical two-way contingency tables. However, due to the nature of this procedure, only a visualization of the association between the categories of the nonordered variable can be made.

METHODOLOGY

Suppose a categorical data are collected in a two way $(r \, x \, s)$ contingency table N with r rows $(labelled A_1, A_2, ..., A_r)$ and s columns $(labelled B_1, B_2, ..., B_s)$ resulting in $r \, s$ cells. The *ijth* cell has entry n_{ij} , representing the observed frequency in row category A_i and column category B_j , i = 1, 2, ..., r, j = 1, 2, ..., s. Then the marginal row total is $n_{i+} = \sum_{j=i}^{s} n_{ij}$, i = 1, 2, ..., r and the *jth* marginal column total is $n_{+j} = \sum_{i=1}^{r} n_{ij}$, j = 1, 2, ..., s. If the individual row and column categories are classified $n = \sum_{i=1}^{r} \sum_{j=i}^{s} n_{ij}$, then the resulting table showing the cell frequencies, marginal total and total sample size is called a correspondence table.

Table 1: Two-way	v contingency table.	showing observe	d cell frequencies.	row and column n	narginal totals.	and total sample size
	y contingency tuble,	, showing observe	a cen nequencies,		nunginun totuis, i	and total sumple size

column Variable								
Row Variable	B_1	B_2		B_{j}		B_{s}	Row Total	
A_1	n_{11}	<i>n</i> ₁₂		n_{1j}		n_{1s}	n_{1+}	
A_2	<i>n</i> ₂₁	<i>n</i> ₂₂		n_{2j}		n_{2s}	n_{2+}	
:	÷	÷	•••	÷		÷	:	
A_i	n_{i1}	n_{i2}		n _{ij}		n _{is}	n_{i+}	
:	÷	÷		÷		÷	:	
A_r	n_{r1}	n_{r2}		n _{rj}		n_{rs}	n_{r+}	
Column total	n_{+1}	<i>n</i> ₊₂		n_{+j}		n_{+s}	п	

Suppose also that we denote by Π_{ij} the probability that an individual has the properties A_i and $B_j, i = 1, 2, ..., r, j = 1, 2, ..., s$. In the event of row variable A is independent of the column variable B, we have that $\Pi_{ij} = \Pi_{i1}\Pi_{1j}$ where $n_{i+} = \sum_{j} \Pi_{ij}$ and $\Pi_{+j} = \sum_{i} \Pi_{ij}$ for all i = 1, 2, ..., r and j = 1, 2, ..., s.

This paper is generally interested assessing whether A and B are actually independent variables or to investigate the homogeneity of the row and column probability distributions; that is whether all rows have the same probability distributions across columns or conversely, whether all the columns have the same probability distributions across rows.

Row and Column dummy variables.

For the two way contingency table above, we are interested in the relationship between the row categories and column categories. We defines two sets of dummy variates, an r-vector $X_i = (X_{ij})$ to indicate which of the n observations fall into the *ith* row, and the s-vector $Y_j = (Y_{ij})$ to indicate which of the n observations fall into the *jth* columns; that is, indicator vectors.

 $X_{ij} = \begin{cases} 1, if the jth individual belongs to A_i \\ 0, otherwise \end{cases}$ $Y_{ij} = \begin{cases} 1, if the jth individual belongs to B_j \\ 0, otherwise \\ i = 1, 2, \dots, r, j = 1, 2, \dots, s \end{cases}$

1 0

(1)

These two indicator vectors are represented into two matrices, X_{rxn} and Y_{sxn} , and are given by

0)

$$\begin{aligned}
X_{rxn} &= \begin{pmatrix} 1 & \dots & 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & \dots & 1 & \dots & 1 \end{pmatrix} \\
\\
X_{xxn} &= \begin{pmatrix} 1 & \dots & 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & \dots & 1 & \dots & 1 \end{pmatrix}$$
2.1
2.2

respectively. The two derived matrices X and Y reproduce the observed cell frequencies and their marginal totals. The (rxs)- matrix, XY reproduces the observed cell frequencies of the contingency table

$$XY = \begin{pmatrix} n_{11} & n_{12} & \dots & n_{1s} \\ n_{21} & n_{22} & \dots & n_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ n_{r1} & n_{r2} & \dots & n_{rs} \end{pmatrix} = N$$
2.3

The matrix XX^{T} and YY^{T} are both diagonal having as diagonal entries the r marginal row totals and the s marginal column totals respectively.

$$XX^{T} = diag(n_{1+}, n_{2+}, \dots, n_{r+})$$
2.4

$$XY^{T} = diag(n_{+1}, n_{+2}, \dots, n_{+s})$$
2.5

Collecting (2.3), (2.4) and (2.5) together, we can form the (r+s)x(r+s) block matrix called the **Brut Matrix** for the contingency table

$$\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}^{T} = \begin{pmatrix} nD_{r} & N \\ N & nD_{c} \end{pmatrix}$$
 2.6

Where,

$$D_r = n^{-1} x x^T$$

$$D_c = n^{-1} y y^{\prime}$$

The Brut matrix (2.6) above is non-negative symmetric.

Profiles, Masses and Centroids

Using the (rxs)-matrix

 $P = n^{-1}XY^T = n^{-1}N$

The correspondence table N is converted to correspondence matrix

Table 2: Correspondence matrix, showing observed cell relative frequencies $P\left(p_{ij} = n_{ij}/n\right)$ row marginal totals $r\left(p_{i+} = n_{i+}/n\right)$ and $C^T\left(p_{i+} = n_{i+}/n\right)$

2.9

	СС	olumn	Vari	iable		
Row Variable	B_1	B_2		B_{j}	 B_{s}	Row Total
A_1	p_{11}	p_{12}		p_{1j}	 p_{1s}	$p_{_{1+}}$
A_2	p_{21}	p_{22}		p_{2j}	 p_{2s}	$p_{_{2+}}$
:	÷	÷		÷	 ÷	÷
A_i	p_{i1}	p_{i2}		p_{ij}	 p_{is}	p_{i+}
:	÷	÷		÷	 ÷	÷
A_r	p_{r1}	p_{r2}		$p_{\scriptscriptstyle rj}$	 p_{rs}	p_{r+}
Column total	p_{+1}	p_{+2}		p_{+i}	 p_{+s}	1

Where $P = (p_{ij} = n_{ij} / n)$ are the cell relative frequencies, $r = (p_{i+} = n_{i+} / n)$ are row marginal totals and column marginal totals $c^T = (p_{+j} = n_{+j} / n)$

The matrix P can be characterized as either the Uniformly Minimum Variance Unbiased (UMVU) estimator or the Minimum likelihood (ML) estimator of Π_{ij} . The (rxs) matrix P_r of row profiles of N (or P) consists of the rows of N divided by their appropriate row totals (*example*, n_{ij} / n_{i+}) which under random sampling, can be characterized as either the UMVU or ML estimator of Π_{ij} / Π_{i+} , the conditional probability that an individual has property B_j given that he or she has property A_i , and can be completed as the regression coefficient matrix of y on x; i. e.

$$P_r = \left(XX^T\right)^{-1}XY^T = D_r^{-1}P = \begin{bmatrix} a_1^T \\ \vdots \\ a_r^T \end{bmatrix}$$

Where $a_i^T = \left(\frac{n_{i1}}{n_{i+}}, \dots, \frac{n_{is}}{n_{i+}}\right)$
2.10

Is the ith row profiles, under random sampling, can be characterized as UMVU or ML estimator of Π_{ij} / Π_{+j} , the conditional probability that an individual has probability A_i given that he or she has probability B_j , and computed as the regression coefficient matrix of x and y, that is

$$P_{c} = (YY)^{-1}YX^{-1} = D_{c}^{-1}P^{T} = \begin{bmatrix} b_{1}^{i} \\ \vdots \\ b_{s}^{T} \end{bmatrix}$$
Where $b_{j}^{T} = \begin{pmatrix} n_{ij} & \dots, & n_{rj} \\ n_{+j} & \dots, & n_{+j} \end{pmatrix}$

$$(2.11)$$

Is the *jth* column profile, j = 1, 2, ..., sThen the row and column means of N are the row and column sums of P given by

$$PI_{s} = \begin{bmatrix} P_{1+} \\ \vdots \\ P_{r+} \end{bmatrix} = r$$
2.13

$$PI_{r} = \begin{bmatrix} P_{+1} \\ \vdots \\ P_{+s} \end{bmatrix} = c$$
2.14

Hence it can be shown that

$$r = P^T D_c^{-1} c$$
 and $c = P^T D_r^{-1} r$

Here the *ith* element $P_{i+} = \frac{n_{i+}}{n}$, of the r-vector r is called the **Row Mass** and is the estimate of the unconditional probability, Π_{i+} , of belonging to A_i . Similarly, the *jth* element, $P_{i+j} = \frac{n_{i+j}}{n}$ of the s-vector c is called the **Column Mass** and is an estimate of the unconditional probabilities Π_{i+j} , of belonging to B_j . Moreso, r and c are also

Mass and is an estimate of the unconditional probabilities 1^{i+j} , of belonging to 2^{i-j} . Moreso, r and c are also regarded as the average row profile and average column profile respectively of the contingency table.

Distances

Within Variable Distances

In correspondence analysis, it is pertinent to determine the distances between different row profiles or column profiles. To achieve this we use the Chi-square metric as a measure of distance (see. Greenacre and Hastie, 1987). Consider the ith row profiles. The within variable square Euclidean distance of the profile from a_i and a'_i is

$$d^{2}(a_{i},a_{i}') \equiv \sum_{j=1}^{s} \frac{n}{n_{+j}} \left(\frac{n_{ij}}{n_{i+}} - \frac{n_{ij}}{n_{i'+}}\right)^{2}$$
 and the Chi-squared distance between *a* and *c* row centroid and summing over all

row profiles yields

$$n\sum_{i=1}^{r} p_{i+}d^{2}(a_{i},c) = \sum \left(n_{ij} - \frac{n_{i+}n_{+j}}{n} \right)^{2} / \left(\frac{n_{i+}n_{+j}}{n} \right)$$
2.15

Which is the Pearson Chi-squared statistic

$$\chi^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
2.16

With $O_{ij} = n_{ij}$ the observed frequencies and $E_{ij} = \frac{n_{i+}n_{+j}}{n}$ the expected cell frequencies.

Consequently, the row profile coordinate close to the centroid supports the hypothesis of independence, while those situated far from the origin support its rejection. It can be shown that in a similar manner that squared Euclidean distance of the jth column profile from the centroid is

$$n\sum_{i=1}^{r} p_{+i} d^{2}(b_{i}, r) = \sum_{i=1}^{r} \sum_{j=1}^{s} \left(n_{ij} - \frac{n_{+j} n_{i+}}{n} \right)^{2} / \left(\frac{n_{+j} n_{i+}}{n} \right) = \chi^{2}$$

Where χ^{2} is given by 2.16.

3. EMPIRICAL EXAMPLE AND RESULTS

A two-way contingency table N with r = 7 and s = 4 was adopted from the work of Haruna et al (2011). It relates to data on political zones and votes by major political parties of a sample of 35906694 valid voters scored by four major political parties in the six geo-political zones in Nigeria and FCT in the 2011 presidential election. It is given as a (7x4)-matrix by

			(4985226	20335	25507	20537		
				2836417	321609	1369943	30456		
				6014283		143060	10819		
		N = X	$Y^T = $	2428350	1503319	83677	31583		
					3402933		151956		
							609246		
			l	253444	6453437 131576	2327	3170		
VV^T VV^T							/		
The matrices XX^T and YY^T a	re giv	en by:							
	(50)	1 (0 5	0	0	0	0	0	0)	
		0 4	4558425	5 0	0	0	0	0	
		0	0	6217853	0	0	0	0	
VI	-T	0	0	0	0 0 4046929 0 0 0	0	0	0	
АЛ	_	0	0	0	0	4991715	0	0	
		0	0	0	0	0	1064965	0	
		0	0	0	0	0	0	390517	
)	
			(21)	365941	0 882900 0 1 0	0	0)		
		YY	r _	0 11	882900	0	0		
				0	0 1	800086	0		
				0	0	0 8	57767)		
Despectively, the matrices									
Respectively, the matrices			• • • • <i>T</i>		Т				
D_r and D_c are obtained by div	iding	hoth ¹	XX^{\prime}	and YY	1				
by n=35906694.	ung	ootii		ana					
by n=33900094.	(0.1404	58	0	0	0	0	0	0)	
	0.1400	0.1	2605	0	0	0	0	0	
	0	0.1	2093	0	0	0	0	0	
	+ 0					0	0		
			0	0.17316	0	0	0	0	
D =	0		0	0.17316 0	0 0.11271	0 0	0 0	0 0	
$D_r =$	0		0 0 0	0.17316 0 0	0 0.11271 0	0 0 0.13902	0 0 0	0 0 0	
$D_r =$	0 0 0 0		0 0 0	0.17316 0 0 0	0 0.11271 0 0	0 0 0.13902 0	0 0 0 0.02966	0 0 0 0	
$D_r =$	0 0 0 0		0 0 0 0	0.17316 0 0 0 0	0 0.11271 0 0 0	0 0 0.13902 0 0	0 0 0.02966 0	0 0 0 0.01086	
$D_r =$	0 0 0 0		0 0 0 0	0.17316 0 0 0 0	0 0.11271 0 0 0	0 0 0.13902 0 0	0 0 0 0 0.02966 0	0 0 0 0 0.01086	
<i>D</i> _{<i>r</i>} =	0 0 0 0		0 0 0 0 (0.595	0.17316 0 0 0 0 504	0 0.11271 0 0 0	0 0 0.13902 0 0	0 0 0.02966 0	0 0 0 0.01086	
$D_r =$			0 0 0 0 (0.595	0.17316 0 0 0 0 504	0 0.11271 0 0 0 0	0 0 0.13902 0 0	0 0 0.02966 0 0	0 0 0 0.01086	
$D_r =$		$D_c =$	0 0 0 0 0 0 0 0 0 0 0	0.17316 0 0 0 0 504 0.3	0 0.11271 0 0 0 0 3093	0 0 0.13902 0 0 0	0 0 0.02966 0 0 0	0 0 0 0.01086	
$D_r =$		$D_c =$	0 0 0 0 (0.595 0 0	0.17316 0 0 0 504 0.33	0 0.11271 0 0 0 0 3093 0 0.	0 0 0.13902 0 0 0 0 05013	0 0 0.02966 0 0 0 0	0 0 0 0.01086	
$D_r =$		$D_c =$	$\begin{pmatrix} 0 & 0 \\ 0 $	0.17316 0 0 0 504 0.33	0 0.11271 0 0 0 3093 0 0. 0	0 0.13902 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.02966 0 0 0 0.02389	0 0 0 0.01086	
	($D_c =$	(0.595 0 0 0	504 0.3:	0 3093 0 0. 0	0 0 05013 0 0	0 0 0 0.02389))	
$D_r =$ To convert the contingency tab	($D_c =$	(0.595 0 0 0 e corr	504 0.3. esponde	0 3093 0 0. 0	0 0 05013 0 0	0 0 0 0.02389))	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ e \text{ correct}\\ P = n^{-1} \end{pmatrix} $	504 0.3. esponde	0 3093 0 0. 0 nce mat	0 0 05013 0 0 rix, then	0 0 0.02389) the (rxs)	
	($D_c =$	$\begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}$ e correction $P = n^{-1}I$ $\begin{pmatrix} 0.138\\ 0 \end{pmatrix}$	504 0.3: esponde V 883 0.000	0 3093 0 0. 0 nce mat	0 0 05013 0 (rix, then 071 0.00	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0.02389 \end{pmatrix}$ the (rxs)	
	($D_c =$	$ \begin{pmatrix} 0.595 \\ 0 \\ 0 \\ 0 \\ e \text{ correct} \\ p = n^{-1} \\ 0.078 \end{pmatrix} $	504 0.3: esponde V 883 0.000 899 0.000	0 3093 0 0. 0 nce mat 061 0.00 895 0.03	0 05013 0 0 rix, then 071 0.00 815 0.00	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0.02389 \end{pmatrix}$ the (rxs)	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0 \end{pmatrix} $ e corrected by the corrected of the corrected o	504 0.3 esponde V 883 0.000 899 0.000 749 0.00	0 3093 0 0. 0 nce mat 061 0.00 895 0.03 138 0.00	0 05013 0 0 rix, then 071 0.00 815 0.00 398 0.00	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0.02389 \end{array} $ the (rxs)	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	504 0.3 esponde V 883 0.00 899 0.00 749 0.00 763 0.04	0 3093 0 0. 0 nce mat 061 0.00 895 0.03 138 0.00 187 0.00	0 05013 0 0 rix, then 071 0.00 815 0.00 398 0.00 233 0.00	0 0 0.02389) the (rxs 057) 084 031 088)	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	504 0.3: esponde V 883 0.000 899 0.000 749 0.00 763 0.04 846 0.094	0 3093 0 0. 0 nce mat 061 0.00 895 0.03 138 0.00 187 0.00 477 0.00	0 05013 0 0 rix, then 071 0.00 815 0.00 398 0.00 233 0.00 155 0.00	0 0 0.02389) the (rxs 057) 084 031 088 423)	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	504 0.3 esponde V 883 0.00 899 0.00 749 0.00 763 0.04 846 0.09 555 0.179	0 3093 0 0. 0 nce mat 061 0.00 895 0.03 138 0.00 137 0.00 477 0.00 972 0.00	0 05013 0 0 rix, then 071 0.00 815 0.00 398 0.00 233 0.00 155 0.00 334 0.01	0 0 0.02389 the (rxs 057) 084 031 088 423 697)	
	($D_c =$	$ \begin{pmatrix} 0.595\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	504 0.3 esponde V 883 0.00 899 0.00 749 0.00 763 0.04 846 0.09 555 0.179	0 3093 0 0. 0 nce mat 061 0.00 895 0.03 138 0.00 137 0.00 477 0.00 972 0.00	0 05013 0 0 rix, then 071 0.00 815 0.00 398 0.00 233 0.00 155 0.00 334 0.01	0 0 0.02389 the (rxs 057) 084 031 088 423 697)	

The row and column profiles with their individual masses $D_r = diag\{r\}$ and $D_c = diag\{c\}$ are **Table 3:** Row Profiles

Table 5: Row Profiles								
Political Zones		Vote	s By Political	Parties				
Political Zones	PDP	CPC	ACN	ANPP	Active Margin			
SOUTH EAST	.987	.004	.005	.004	1.000			
SOUTH WEST	.622	.071	.301	.007	1.000			
SOUTH SOUTH	.967	.008	.023	.002	1.000			
NORTH CENTRAL	.600	.371	.021	.008	1.000			

NORTH EAST	.277	.682	.011	.030	1.000
NORTH WEST	.326	.606	.011	.057	1.000
FCT	.649	.337	.006	.008	1.000
Mass	.595	.331	.050	.024	

	Table 4: Column Profiles									
Delitical Zenes	Votes By Political Parties									
Political Zones	PDP	CPC	ACN	ANPP	Mass					
SOUTH EAST	.233	.002	.014	.024	.141					
SOUTH WEST	.133	.027	.761	.036	.127					
SOUTH SOUTH	.281	.004	.079	.013	.173					
NORTH CENTRAL	.114	.127	.046	.037	.113					
NORTH EAST	.065	.286	.031	.177	.139					
NORTH WEST	.162	.543	.067	.710	.297					
FCT	.012	.011	.001	.004	.011					
Active Margin	1.000	1.000	1.000	1.000						

Which is the unconditional estimate of the probability Π_{i+} , of belonging to A_i and Π_{+j} , of belonging to B_j respectively.

Table 4 : Summary										
	Singular				Proportio	n of Inertia	Confidence Singular Value			
Dimension	Singular Value	Inertia	Chi Square	quare Sig. Accounted for Cumulat		Cumulative	Standard Deviation	Correlation 2		
1	.642	.412			.701	.701	.000	.158		
2	.413	.170			.289	.990	.000			
3	.076	.006			.010	1.000				
Total		.588	21117658.794	.000 ^a	1.000	1.000				

a. 18 degrees of freedom

From Table 4 above, the Pearson Chi-squared statistic of 21117658.794, and with a zero p-value, it is highly statistically significant. Therefore, with a total inertia of 0.588 which is the measure of variation in the N, there is a significant association between the votes scored by the major political parties and their political zones.

When correspondence analysis is applied as in this study, the squared singular values are $\lambda_1^2 = 0.4122$, $\lambda_2^2 = 0.1706$ and $\lambda_3^2 = 0.0058$ and the two dimensional correspondence plot is given in Figure 1. There the first principal axis accounts for

0.4122/0.588*100 = 70.102% of the two variables, and the second axis accounts for 29.014%. Therefore, the two dimensional plot of Figure 1 graphically depicts 99.116% of the association that exist between the votes by political parties and its political zones.

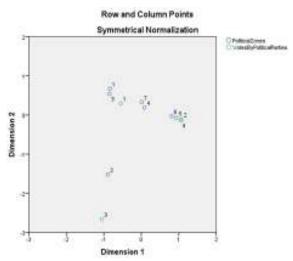


Figure 1: Symmetric Two dimensional Correspondence Map for the votes by political parties/political zones

CONCLUSION

The forgoing discussion we have developed a method for the analysis of two-contingency table using the correspondence analysis technique. The empirical result obtained shows that the pattern of voting in the 2011 presidential election were the same in the south east and south south, north central and FCT, north east and north west respectively, only south west demonstrated a different pattern. On the number of votes scored by the political parties, CPC and ANPP scored had the similar pattern while PDP and ACN seem to standout on their pattern.

REFERENCES

- 1. Alan J. I. (2008): Modern Multivariate Statistical Techniques; Regression, Classification and Manifold Learning. New York, Springer.
- 2. Greenacre M., and Hastic T. (1987). The geometric Interpretation of Correspondence Analysis. Journal of American Statistical
- 3. Association, 82, 437-447
- Haruna I., Ozodinobi N. B., Sulaiman S. A. and Oyewole S. A (2011). Statistics and Electoral process, Nigerian Experience. Proceedings of the 35th conference on "Statistics: A varitable Tool for Achieving a stable Democracy. 349-360. Nigerian Statistical Association.
- 5. Hassel P. J. and Ganesh S. (1996). Correspondence analysis of English as a foreign language. The New Zealand Statistician, vol. 31, pp. 24-33.
- 6. Hoffman D. L. and Franke G. R. (1986). Correspondence analysis: graphical representation of categorical data in marketing research. The American Statistican, vol.23, pp 213-227.
- 7. Javalgi T., Whipple, T., McManamon, M. and Edick V. (1992). Hospital Image : A correspondence approach. Journal of Healthcare Marketing. Vol. 12, pp 34-41.
- 8. Kishino H., Hanyu K., Yamashita H. and Hayashi c. (1998). Correspondence analysis of paper recycling society: consumers and paper makers in Japan, resources, conservation and recycling. Vol. 23, no. 4, pp 193-208.
- Romney, A. K., Moore, C. C. and Rusch C. D. (1997). Cultural Universals: Measuring the Semantic structure of emotion terms in English and Japanese. "Proceedings of the National Academy of Sciences of United States of America, vol. 94, No. 10, pp 5489-5494.
- Watt, D. D. (1997). Correspondence Analysis: a graphical technique for examining categorical Data. Nursing Research, vol.46, no. 4, pp 235-239.

Source of Support: None Declared Conflict of Interest: None Declared