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INTRODUCTION 
The Pareto distribution, named after the Italian

engineer, economist, and sociologist V. Pareto

law probability distribution that is used in description 

of social, scientific, geophysical, actuarial, and many 

other types of observable phenomena related to 

econometrics. Pareto originally used this distribution to 

describe the allocation of wealth among individuals since 

it seemed to show rather well the way that a larger portion 

of the wealth of any society is owned by a smaller 

percentage of the people in that society. He also used it to 

describe distribution of income. The probability density 

function (PDF) graph of this distribution shows that the 

"probability" or fraction of the population that owns a 

small amount of wealth per person is rather high, and then 

decreases steadily as wealth increases. This distribution is 
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small amount of wealth per person is rather high, and then 

decreases steadily as wealth increases. This distribution is 

not limited to describing wealth or income, but to many 

situations in which an equilibrium is fo

distribution of the "small" to the "large". Mukhopadhyay 

and Ekwo (1987) proposed some sequential estimation 

problems for the scale parameter of a Pareto Distribution 

and have time and again provided solutions for some 

related given precision problems. Castillo and Daoudi 

(2009) and De Zea Bermudez and Kotz, S. (2010), 

focused on new methods for Parametric estimation of the 

generalized Pareto distribution. Nadarajah and Ali (2008) 

applied Pareto random variables for hydrological 

modeling. In this paper we consider the problems of 

constructing confidence interval for the log of scale 

parameter of Pareto distribution. We prove the fai

the fixed sample size procedures to handle the estimation 

problems. Purely sequential procedure 

tackle the situation and second-order approximations 

obtained. In section 2, we describe the set

estimation problems and prove the failure of the fixed 

sample size procedures to deal with them. In section 3, 

we develop sequential procedure to construct fixed

confidence interval for the log of scale para

Pareto Distribution. 
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Let us consider a sequence ����, � = 1,2, … of independent 

random variables from a first kind of Pareto Distribution  �(�; �, �) = ������ �� ��� ���� ;  � ≥ � > 0, � > 0, 
where � and � are respectively, the unknown scale and 

shape parameters. Given an observed random sample ��, … . . , �� of size n(≥2), for ��(�) = min (��, … . . , ��), 

Let ��(�) = log ��(�) and  �"� = (# − 1) % log��&� '��/��(�)� be the estimators of log µ and σ, respectively. 

Let(log � , �) ) ℜ × ℜ,, where ℜ and ℜ,denote, 

respectively, the one –dimensional euclidean space and 

the positive-half of the real line satisfying the following 

assumptions: 

(i) : #���-.��(�) − /01�23 ~ 5(6)6 ,       where 5(7)6  denotes a chi-square random variable 

with 2 degrees of freedom. 

(ii) For all # ≥ 2,  ��(�) and �8� are stochastically 

independent. 

(iii)  : 2(# − 1)�8� �� =% 9:(6),���:&�  ;ℎ=>= 9:(6)~5(6)6 . 
Our problem is to construct a fixed-size confidence 

interval for log �. For specified ? (> 0) and @ ) (0,1), 

suppose one wishes to construct a confidence interval A� 

for log � such that its maximum width is 2d and B(log � ) A�) ≥ @. We define      A� =- 9 ∶ '. ��(�) − 9 2D ≤ ?63                               
    (2.1) 

We note that A� is ellipsoidal confidence interval.  

Since B(log � ) A�) = B F.��(�) − log �26 ≤ ?6G ≡B-I��(�) − log �I ≤ ?3,  
results based on the confidence interval (2.1) are 

equivalent to those based on the confidence interval of 

width 2d. Denoting by  J(6)(. ), the cumulative 

distribution function ( c.d.f ) of a 5(6)6  random variable 

and utilizing (�), we obtain from (2.1),   B(log � ) A�) = J(6)(# ���?6).                                                    
      (2.2) 
Let ‘a’ be the constant, determined by the relation   J(6)(K6) = @.                                   (2.3) 
Using monotonicity property of cumulative distribution 

function (cdf), it can be seen from (2.2) and (2.3) that, for 

known �, in order to achieve  B(log �  ) A�) ≥ @,  
 the fixed sample size required is the smallest positive 

integer # ≥ #∗,  
where  #∗ = (K ?� )6�.                    (2.4) 

However, as we have already assumed, that � is 

unknown, there does not exist any fixed sample size 

procedure which achieves the goals of ‘specified width 

and coverage probability’ for all values of �. Thus we 

propose a sequential procedure to tackle the problem as 

demonstrated in the next section. 

 

SEQUENTIAL PROCEDURE TO 

CONSTRUCT FIXED-SIZE CONFIDENCE 

INTERVAL FOR OPQ R  
Let us start with the sample of size S ≥ 2. It is worth 

mentioning here that we take S ≥ 2 in order to ensure 

the assumptions (�) − (���). Then, the stopping time T ≡ T(?) associated with the sequential procedure is 

defined by  

 T = �#� U# ≥ S ∶  # ≥ VWXY6 �8�Z.   

      

        (3.1) 

After stopping, we construct the interval   A� = - 9 ∶ '. ��(�) − 9 2D ≤ ?63  (3.2) 

for log �. Utilizing (�) K#? (��), the coverage probability 

associated with this sequential procedures defined at 

(3.1), comes out to be  

  

B(log �  ) A[) = \ B U#��� ].��(�) − /01�26^�/6∞

�&_≤ K6 V ##∗Y ; T = #Z 

  

 = \ B F#���'.��(�) − /01�2D ≤ K6 V ##∗Y ; T = #G∞

�&_  

 = \ J(6) `K6##∗ a B(T = #)∞

�&_  

   = b FJ(6) VWc��∗ YG.     (3.3) 

In what follows, we obtain second-order approximations 

for the expected sample size and coverage probability 

associated with the sequential procedures. Before proving 

the main results, we establish some lemmas. We denote 

by  

 d� = 2(# − 1)�8� �� .   

Lemma 3.1: N terminates with probability one.  (3.4)   lim X→f T = ∞ K. g.     (3.5) 

 limX→f  [�∗ = 1 K. g.                          (3.6)                                                                           

Proof: Denoting by 9� = �d� − 2(# − 1)� j4(# − 1)� ,  

 it follows from the definition of N that   B(T > #) ≤ B Fd� − 2(# − 1) V ##∗YG  
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  = B k9� ≥  ]6(���)6 ^lc ]V ��∗Y − 1^m.   (3.7) 

It follows from (iii) and the central limit theorem that 9� o→  9 as #  →  ∞, where 9~T(0,1) and from Zacks 

(1971,p.561),  1 − Φ(p) ≈ p�� r(p) Kg p  →  ∞,  

where Φ(p) and r(p) denote, respectively, the 

cumulative distribution function and probability density 

function of a N(0,1) random variable.  

Thus we obtain from (3.7),  B(T > #) = s.#�t 6� 2 Kg #  →  ∞,and (3.4) follows. 

Result (3.5) is a direct consequence of the definition of N.  

We notice the basic inequality   VWXY6 �8[ ≤ T ≤ VWXY6 �8[ + (S − 1),  (3.8) 

 or   V�"w� Y ≤ [�∗ ≤ V�"w� Y + (_��)�∗ .                                                                                                                                                                 (3.9) 

From (iii) and strong law of   large numbers [See Bhat 

(1981,p187)], we conclude that �8[ W.y.z{  � Kg  #  →  ∞. 

Result (3.6) now follows from (3.9) on taking the limit as ?  →  0 and using (3.5). In the following lemma, we 

provide a simple and direct method of obtaining 

asymptotic distribution of the stopping time. 

Lemma 3.2 : As ?  → 0, (#∗)�� 6� (T − #∗) o → T(0, 1). 

Proof : It follows from (iii) that  b(�8�) = �  
and   b.�8�62 = �6|1 + 2(2#)�� + 0(#��)},  0> b.�8�62 = �6|1 + 1/# + 0(#��)}, 
so that, 

 ~K>(�8�) = 2�6(2#)�� + 0(#��)  

 0> ~K>(�8�) = �6/# + 0(#��). 
Thus, from central limit theorem,  �#∗  .�"�∗��2�   o →  T(0, 1), as #∗  →  ∞, 

which on using lemma 1 and Theorem 1 of Anscombe 

(1952), leads us to that, as ?  →  0,   �[(�"w��)�   o →  T(0, 1).                                                                                                                                                                       (3.10) 

We obtain from (3.8) that  

 �#∗(�8[ − �)� ≤ (T − #∗)(#∗)� 6� ≤ �#∗(�8[ − �)� + (S − 1)(#∗)� 6� ,  
which on applying (3.10) gives the desired result. 

Lemma 3.3 : (T − #∗)6 #∗�  is uniformly integrable for 

all S > 2. 
Proof: Denoting with F (.), the cumulative distribution 

function of 9:(6)
,  

we have for some B( >0), 

�(�) = B V9:(6) ≤ �Y 

= � � =�� 6�  �
f �6 6��� ?�  

 ≤ �� 

Thus, in Woodroofe’s (1977) notations, K = 1. The 

lemma is now a direct consequence of Theorem 2.3 of 

Woodroofe (1977). 

Lemma 3.4 : For � )(0, 1), as ?  →  0,  B(T = S) = B(S + 1 ≤ T ≤ � #∗) = s.?6(_��)2. 
Proof: The proof is similar to that of Lemma 3 in 

Chaturvedi, Pandey, and Gupta (1991). The main results 

of this section are now stated and proved in the following 

theorem, which provides second-order approximations for 

the expected sample size and coverage probability 

associated with the sequential procedures. 

Theorem 3.1 : For the sequential procedures defined at 

(3.1), and all S > SKp�1, 2�, as ?  → 0   b(T) = #∗ + � − 2 + 0(1),    (3.11) 

and  B(log � ) A[) = @
+ `K6#∗a U� − 1
+ 14 �2 − (K6 + 6)�Z 1(6)(K6)  +0(?6)                  (3.12) 

where 1(6)(. ) denotes the probability density function 

(pdf) of a  5(6)6  random variable and � is specified. 

Proof: Utilizing (iii), the stopping rule (3.1) can be 

rewritten as  

 T = �#� �# ≥ S ∶ \ ]1 2� 9:(6)^���
:&� ≤ (# − 1) V ##∗Y�.  

Let us define a new stopping variable T∗ by  

  T∗ = �#� F# ≥ S − 1 ∶ % ]1 2� 9:(6)^�:&�  ≤#6(1 − #��)(#∗)��G.                   (3.13) 

Along the lines of proof of Lemma 1 in Swanepoel and 

van Wyk (1982), it can be shown that the stopping 

variables T K#? T∗ follows the same probability 

distribution. From (3.13) and equation (1.1) of 

Woodroofe (1977), � = #∗, �(#) = 1 + g#��, �f =g, @ = 2, � = 1, � = 1 and �6 = 2���. Result (3.11) is 

now a direct consequence of Theorem 2.4 of Woodroofe 

(1977) that, for all S > SKp(1, 2), as ?  →  0,   b(T) = � + ����� − ��f − (1 2� )@�6�6��6 + 0(1).  
Expanding J(6)(.) around ‘K6’ by Taylor’s series 

expansion, we obtain from (3.3), for   �K6 − �� ≤ K6�(T #∗� ) − 1�,  B(log �  ) A[) = J(6)(K6) + K6J(6)′(K6)b|(T #∗� ) − 1} 
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 +(K� 2� )b F�(T #∗� ) − 1�6J(6)′′(�)G,                                                                                                                                        (3.14) 

  

where J(6)′(�) K#? J(6)′′(�) denote, respectively, the 

first and second derivatives of  J(6)(�) . It can be seen 

that J(6)′(�) = 1(6) (�) and J(6)′′(�) = |− 1 2� }1(6) (�).    (3.15) 

On the event ‘T > � #∗’, �� − 1� ≤ �(T #∗� ) − 1� gives, � ≤ � ≤ 2 − �, that is, both positive and negative 

powers of W are bounded. Thus, from (3.15),  J(6)′′(�) 

is bounded on the event ‘T > � #∗’. Moreover, on the 

event ‘T < � #∗’, (S #∗� ) ≤ � ≤ (2 − S #∗� ), so that, 

for d sufficiently small, denoting by K-any positive 

generic constant independent of d, we have b FJ(6)′′(�)�(T ≤ � #∗)G ≤ � #∗B(T ≤ � #∗),  
which on using Lemma 3.4 gives, as ?  →  0,  b FJ(6)′′(�)�(T ≤ � #∗)G = 0.?6(_��)�62  = 0(1), for all S > 2 

Thus we conclude that J(6)′′(�) is bounded for all S > 2. It follows from (3.6) and the definition of � that �  W.y.z�{ K6 as ?  →  0.  

Using these results, lemmas 3.2, 3.3 and (3.11), we obtain 

from (3.14) and (3.15), for all S > max(1, 2), as ?  →  0,  

B(log �  ) A[) = @ + `@6 #∗a |� − 2 + 0(1)}1(6)( K6)  

  + V ��
 6�∗Y |− 1 2� }1(6)( K6).Result (3.12) now follows 

after some algebraic manipulations, thus completing the 

proof of the theorem. 
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