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Abstract In this paper, we provide Bayesian estimation of the parameter of the exponential distribution based on maximum ranked
set sampling with unequal samples (MRSSU). Under this method, we use linex loss function as asymmetric loss function
and squared error loss function as symmetric loss function (SEL) to derive Bayesian estimate of the parameter of
exponential distribution. The conjugate and Jeffreys-non informative prior distributions are used to study the performance
of the obtained estimates. The efficiency of these estimates are compared with estimates based on simple random
sampling (SRS) and ranked set sampling (RSS). It is shown that suggested estimators are more efficient than the
estimators from SRS, and it is a good competitor to RSS.
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INTRODUCTION
The concept of ranked set sampling was first proposed by Mclntyre’ for situations where measuring the sample
observations is not easy or it is costly and time consuming, but the ranking of items according to the variable of interest
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is relatively easy without considering actual measurement. In RSS; one first draws m ® units at random from the
population and partitions them in to 7 -sets of m -units. The m units in each set are ranked without making actual
measurements. The first set of 771 -units are ranked and the lowest is chosen for actual quantification. From the second set
of m -units, the unit ranked second and the lowest is measured. This process is continued until the unit ranked largest is
measured from the m -th set. If a larger sample size is required then the procedure can be repeated for » times to obtain
a sample of size 7 = rm . These chosen elements are called ranked set sample. Takahasi and Wakimoto'” and Dell and
Clutter’ established statistical foundation for the theory of RSS. For more research work on parametric methods for RSS,
see, for example, Stokes'®, Samawi et al.”’, Shaibu and Muttlak'®, Sengupta and Sujay Mukhuti'*. Al-Omari et al.>. Some
studies have investigated ranked set sampling (RSS) from Bayesian point of view. Al-Saleh and Muttlak® used RSS in
Bayesian estimation for exponential and normal distributions to reduce Bayes risk. Zellner" studied Bayesian estimation
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for scalar least regression coefficient estimator using asymmetric loss functions. Al-Hadhrami and Al-Omari' discussed
the Bayesian inference on the variance for normal distribution using moving extremes RSS. Sadek, Sultan and
Balakrishnan'’, and Sadek and Alharbi'' have obtained the Bayesian estimate of the exponential and Weibull
distributions using SEL and LINEX loss functions respectively. They showed that the Bayesian estimators based on RSS
are less biased and more efficient than the corresponding Bayesian estimators of SRS. Ghafoori et al.® studied the
Bayesian two-sample prediction with progressively Type-II censored data for some life time models. Mohie El-Din, Kotb
and Newer'’ studied the Bayesian estimation and prediction for Pareto distribution based on RSS. In this paper, we
consider MRSSU method proposed by Biradar and Santosha’ for Bayesian estimation of exponential distribution. In
Section 2, some basic concepts are discussed. The Bayesian estimators under SEL and LINEX loss functions of the
parameter of exponential distribution using SRS and MRSSU are presented in Section 3 and 4 respectively. Simulation
results are presented in section 5.

BASIC CONCEPTS
Let X, X,,...,X
distribution with parameter €, has a probability density function
f(x,0)=0e%,x>0,0>0. )
and its cumulative distribution function (cdf) is
F(x,0)=1-e*, x>0,6>0. ?)

In order to derive the Bayesian estimators, the conjugate prior for & is considered, i.e., 8 : Gamma(a, ) whose pdf is

be sequence of independent and identically distributed (iid) random variables from exponential

m?

given by

-08 na-1
7r(9)=e 4 0<6 <o,

() B* 3)
where @ >0 and £ > 0 are the hyper parameters. If & = =0, then 7(0) becomes the Jeffreys prior. In Bayesian

approach most of the studies use the squared error loss function (SEL) (see, Box and Tiao® and Berger®), as the basis of
measuring estimators performance. Linear exponential (LINEX) loss function, introduced by Varian'®, is a asymmetric

loss function and it is natural extension of SEL. The LINEX loss function for the parameter € can be expressed as
L(8,c)=d(e” —cS—1), where & = (é— 0); 0 is an estimate of @ and ¢ #0, ¢ and d are shape and scale

parameters. The Bayes estimator of € under the LINEX loss function, denoted by éL is the value which minimizes

E[L(é —0)], and it is given by

6

nx >

Lnx

= —llnE(e’C'g).
¢

BAYES ESTIMATE BASED ON SRS
In this section, we derive the Bayesian estimate of the exponential parameter € based on SRS. We use both conjugate
and the non-informative prior and also we consider SEL and LINEX functions to derive the estimates. Let p(€ | x)

denote the posterior density of @, given SRS X is

2O I/ 16)
pO]x)= -

f ;z(e)ﬁf(x,. |0)do
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m
- - 6,
e ”6” 1I |t9€ !
i=1

[[e”o E[ee‘&‘fde
then,

m
—9(2 x;+p)

emﬂz—le i=1

= — )
T(m+a)) x, +p) "
i=1

The Bayesian estimate of € based on SEL function is

05, = E©0|X)= [ op(6| x)d0

m

-00) 5+
J‘we(m+a+l)—le i=1
— 0

. do
C(m+a)Q x, + B) "
=1
Therefore,
m+ao

X+
i=1 (5)
The Bayesian estimate of € based on LINEX loss function is
x 1
O 1 = _—ll’lE(eicg)
C

—Q(ixi+ﬂ+c)
® Am+a-1 i=
1, Le e i do

I'(m+ a)(zm:xi + B) e

then,

:(m+ajln ;xi+ﬂ

¢ ixl. +p+c
B ©

1
The non-informative prior distribution of the parameter @ obtained from (3) which is given by 7(8) oc 5 ,0>0.

Then, the posterior density can be expressed as
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;]i[f(x,- 10)

p(O] )= —2=
e 1000

0 gl

3

m
—Hin m
m—1 i=1 m
e T (3
i=1

L'(m)

We can observe that the posterior distribution of & is a gamma distribution with parameter (2, Zm X;). The Bayesian

estimate of @ based on squared error loss function is:

)1, = E(6|X)

-0 ) x;

(zxi )m J.: 0(m+1)—le i=1 do

_ =l
L'(m)

_ T(m+1)

L(m)(Q x,)

i=1
m

(7
The Bayesian estimation of € based on LINEX loss function is
nJj 1 —c6
0L = ——I[E(e™)]
c

1 (in)m -6( xi+c)
= __ln LJ‘ Hm_le i=1 de
c ['(m)

therefore,
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®
BAYES ESTIMATE BASED ON MRSSU

In this section, we derive the Bayesian estimate of & based on MRSSU using squared error and linex loss functions. Let
(X, X, s X}, i=1,...,m be m sets of random samples from X , and they are independent. Denote
Y =Max{X,,X,,....X,;},i=1,...,m.Then {¥,Y,,...,Y, } bea MRSSU of X . Note that the elements of this
samples are independent. It is assumed through out this paper that the judgemental ranking is perfect, i.e., the visual
ranking is the same as the actual ranking. Then, the density of Y, has the same density as the i-th order statistic

YT m

(maximum) of an SRS of size i from f(x,8),i.e., ¥, has the density

[y 10) =ilF(y,]"" f(»,0).

Let MRSSU be drawn from an exponential distribution defined in (1), then the density function of Y, is
S 16)=ill—e " "] 6 ™

i—-1 : _1 3 N
. Zi(l j(—l)qﬁe 2, 50,0 > 0.
q=0 q

Then, the joint density of MRSSU due to independence of ', s is given by

ra1o=11roio =11 3 ,( - j(_l)qgeey,.w

-0 y yi(ki+1)
Sy Sl e T
ky=0ky=0 K, =0] -l k;
CONJUGATE PRIOR FOR ¢
Let I1(6 | Z) denote the posterior density of €, given MRSSU. Then, the posterior density of & is

2(0)f(»]0)
[ =)/ (y10)d0

1@ y) =

m

0 1 m-1 m —H(Zyi(ki+1)+ﬂ)
s s

k=0ky=0 k=0 =l

m

J =00 y,(kH1)p)

1385311 () S R

kIOk2 k =0 i=1 i

Therefore,
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ot 00) Y, 1)
S5 S e ©

k=0ky=0 k=0 i=l

m-1 m

ZZ Z(l—[l[ k. J(_l )ki )F(m-}-a)[iyl(kl +l)+ﬁ]—(m+a)

k1—0k2 =0 i=l (9)
The Bayes estimate of & under SEL function is .

05, = E0| V)= [ ON1(0] y)do

3 SAH oo T an

k] Okz—O k =0 i=l

ZZ i(ﬁ( L j(—l)k" )F(m+a)[ivi(ki 1)+ gL
>y mi(ﬁ( ](—l)kfxmm)('"zv,.(k,.+1)+ﬁ)«m+a+n
kI:Okz—O =0 =1 p=r

m-1 m

k. m m

305310 () SUIN TR B

k=0ky=0 k=0 i1 =l (10)

To obtain the Bayesian estimate of & based on LINEX loss function, we need to calculate the posterior expectation of
-0

€ from (9), we have

m

o (i) ﬂg(Z)}(kiHHﬂC)
) z<n( Jangee =

kl%jo k =0 =

Be™)=

ml m

ZZ >3 j(—l) Mm+a) [Zy, (e +1 81

ly=0ky=0 k=0 i<l

Therefore,
ZZ Z( j(—l) )(m+a)(2y (ke +1y+ Bcy e
_ k0,0
55 i( i j(l)"f)[fm,- Y
f=0k=0 k=0 i1

(1)
Now from (11), the Bayesian estimate of € on LINEX is

0,0 ()= —11n [E(e )]

NON-INFORMATIVE PRIOR FOR ¢

(12)

1
The non-informative prior distribution of the parameter & is given by 7(6) oc rE 6 > 0. The posterior density of &

for MRSSU can be derived as
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1
2710

-
f, 5 f(10)d0

(@[ y) =

m

0 1 ml m (i1 . “9(. i (ki +D+5) )
z z Z (Hl[ . J(_l) l)e i=1 9m+a 1

k =0k, =0 k=0 i=l

m
H(ZVZ (kl+1)+/i)

] ZZ(]ﬂ[( j( 1" )j 0" do

k

m

0 1 792yi(ki+1)
22 Z(H{ }(—1)"")9'%

S e o

(13)
From (13), the Bayes estimate of & under SEL function is
b, = E@|Y)=[ 16| y)do

m

| Vi (ki +1)

S5 S0, oo 5 e

k1 =0ky=0 km—O i=1

0 1 m—1

m '_1 s m
ZZ_ _(H( J(—l)l)rm[Zy,-(k,-+1)Tm

0 1 m— 1—

zz.-.zqﬁ{k

_ k1=0k2=0 km=0 i= i

1 k. u —(m+
](—1) Yy, G+ Dy

0 1 m m

2.2 Z(H{ J(—l)"")[ﬁy,(kﬁl)rm

k=0ky=0 k=0 i=l
(14)

To obtain the Bayesian estimate of & based on LINEX loss function, we need to calculate the posterior expectation of

e’ from (13), we have

m
o A ik

ZZ S }—1) [ore T do

kl:Ok2=O k, =0 =l

He)=

m1l m

HIBY }—n (S

k=0ky=0 k=0 i=l

Therefore,
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| T zﬂ( j< Sy Fyroye |
=_7In kI:Ok:O
‘ ZZ Z(H{ j( 1y )[Zv(k+m
- (15)

Now from (15), the Bayesian estimate of & on LINEX is
1 i
0. ()= ——ln[E(e ol

BAYES ESTIMATE BASED ON 7 - CYCLE MRSSU
LetY, .Y, .. Y53 Y50, Y50, s Y53 Y Y 5.0 Y 5 be the 7 cycle MRSSU from the exponential distribution

and the prior pdf, Gamma : (&, ) .
Then the joint density is given by

P01 mm (i ﬂ9&%-’“‘:‘*”
= k. ,
¢010-] IE,Z---EJI ﬂ k}—l)'}% T o0
kfn i=1 i

= o -0

23D 530 3NN MD I 3)
KH=okl=0 &l -0l K=0k2=0 k2-0 K=0kb=0 k" =0
1 2 m 1 2 1 2 m
r m
- - _azzyli (k41
| II |l (- 1) GMe Pl
=1 i=1 i
r 0 1 m—1 _er]
_ rm i
SIS XS gm0
=t l—okb-0 ¥l -0 !

r m _1 k? r m
where§kil = {H, IT5 j(—l) } and 0, = Doy (k+1).

The posterior density of & for MRSSU can be derived as
7(0)f(y]0)

[z f(y10)d0

10| y)=

mol 000 +h)

0 1
z z Z é:klerm-#a—le i

ro 0 1 1 —9(Q1+ﬁ)

Hz z é:k[ rm+a 1e k; do
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-0(Q ;+p)

0 1 m—=1
i

x5k

1=1 jl_ol =
kj=0ky=0 k=0

sz Z &, Lrm+a)(Q o+ B) e

=Ll —okh=0 =0
(16)

From (16), the Bayesian estimate of € based on SEL function is obtained as

0, (Y =E@©|Y)
-0(0 ;+B)

H Z z &« I:H(rm+a+l)—le k de

gk(
=Uilokb=0 k=0 |

ﬁz Z S fkgl“(rm+a)(Qk{ _,_ﬁ)—(rmm)

I=1 1 _nd _ ! _
L k] —0k2—0 km—O

0rm+a—1 e

r ]Z IZ mi égkl (rm+a)(Qk( +IB)—(rm+a+l)

K=o
m_

XXX ey m

okb=0 ¥ =0
m
Using the non-informative Jefferys prior in (3), we obtain the Bayesian estimate based on the SEL function is

>3 emio, 1o

~. =ll=okb=0 ¥ =0
0y, (1) = b
r 0 1 m—1
T2 22, 16,00,1™
Fld-okb=0 k0|
17)
From (16), the Bayesian estimate of € based on LINEX function is
) m-1 1 le+ﬁ)
—l Mo i
e HZZ 260
~ 1 IS lkl:O/a:O kl [
QLVIX(D:‘I’]
c
| |§ Z Z c. F(rm+a)(Q/+ﬁ)*’””“)
Hil-o-0 & -0 g

Page 72
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m-1
| |§ z z (rm+a)(Ql + f+c) e
1 Hil-oib-0 & -0 f
=—In
C m-1

Y-Sk 5,0, +A

Hid-oib=0 & =0 ki

(18)

Using the non- 1nf0rmat1ve Jefferys prior in (3), we obtain the Bayesian estimate based on the SEL function to be

HZZ z - ("m)(Qz+C) )
Fld-ob=0 & -0 i
Lnx(Y)———l
. Z Q)
U !
(19)
SIMULATION RESULTS

In order to evaluate the behaviour of the Bayesian estimates based on SRS, RSS and MRSSU, we perform a simulation
using R-software version 3.1.1 for different values of m =3, 4 and 5 according to the following steps:
1. Generate SRS and RSS and MRSSU samples of size m from the exponential distribution with @ =2 for r =1
cycle.
2. Compute the Bayesian estimates derived in Section 3 and 4 for SRS and MRSSU, respectively and for RSS
[See, equations of Sadek, Sultan and Balakrishnanlz].
3. Repeat the above Steps 1 and 2 for 1000 runs.

4. Compute, Blas(ﬁ 0)= (9 € and MSE of all the etimates, where 19 is the average of the 1000 estimates of &
and @ is the value that is used in the simulation.
5. Let e, and e, represents relative efficiency of Bayesian estimate of & based on MRSSU with respect to SRS,
for SEL and Linex functions respectively be defined by
MSE 5 (0s.,) and  e. = MSE (0,,,.)
MSEMRSSU (eSel) ’ MSEMRSSU( Lnx)

Similarly, e; and e, represents relative efficiency of Bayesian estimate of € based on MRSSU with respect to RSS, for

L=

SEL and Linex functions respectively is defined by

e, = MSE 55 (0s,,) and e, = MSE 55 (0,,,.)

MSEMRSSU (0Sel) MS MRSSU( Lnx)
Bias, MSE and Relative efficiency of the Bayesian estimates based on SRS, RSS and MRSSU, when =2, a =1,
L =1 of size m=3,4 and 5 are represented in Table 1-3.

From Table 1, it is observed that the Bayesian estimates of @ are all biased. Next, we observed that the Bayesian
estimates based on Jeffreys prior are less biased than gamma prior. Also, we observe that the Bayesian estimates based
on RSS and MRSSU are less biased than the corresponding SRS Bayesian estimates. From Table 2, it is observed that
the mean squared error of all estimates decreases when sample size increases. Next, we observe that the Bayesian
estimates based on RSS and MRSSU have a much smaller mean squared error than the corresponding Bayesian estimates
based on SRS in all cases considered and MRSSU MSE is lesser than RSS MSE for m=5. From Table 3, we observed

that the computed relative efficiency (e,,e,) of MRSSU Bayesian estimator w.r.t. SRS Bayesian estimators are greater
than 1 and increases with m . Therefore the Bayesian estimator based on MRSSU is more efficient than the
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corresponding SRS Bayesian estimator for Jeffrey and gamma prior. Also, it is observed that the relative efficiencies (e,

,e,) of MRSSU Bayesian estimator w.r.t. RSS decreases in the case of 3<m<4 as the sample size m increases. We

notice that the relative efficiency (e;,e,) is greater than 1 for m=5, in this case estimator using MRSSU is better than

RSS. This is because RSS of the same size m uses more ranked units than MRSSU of the same size, for example RSS of
size 5 uses 25 ranked units, whereas MRSSU of the same size uses only 15 ranked units. Therefore we conclude that for
large sample size m , MRSSU Bayesian estimators are good competitor to RSS Bayesian estimator.

Table 1: Bias of the Bayesian estimates, when 9:2, a =1, ﬂ =landc=1, -1.

Bias( Qsel) Bias( Qsel ) Bias( QLM ) Bias( QLM )
m Jeffrey prior Gamma prior Jeffrey prior Gamma prior
SRS RSS MRSSU SRS RSS MRSSU ¢ SRS RSS MRSSU SRS RSS MRSSU
3 0.2218 0.0934 0.0937 0.2151 0.1204 0.1205 1 0.1150 0.0573 0.0566 0.1450 0.0880 0.0874
-1 0.3542 0.1406 0.1429 0.3200 0.1597 0.1609
4 0.1510 0.0468 0.0576 0.1696 0.0691 0.0803 1 0.0953 0.0288 0.0379 0.1278 0.0517 0.0613
-1 0.2565 0.0669 0.0800 0.2441 0.0884 0.1015
5 0.1196 0.0316 0.0363 0.1404 0.0478 0.0538 1 0.0600 0.0202 0.0238 0.0924 0.0366 0.0415
-1 0.1568 0.0438 0.0498 0.1720 0.0598 0.0671
Table 2: MSE of the Bayesian estimates, when 0:2, a =1, ﬂ =landc=1, -1.
MSE(bg,;) MSE( &g,;) MSE(E,,.) MSE(E,,,.)
M Jeffrey prior Gamma prior Jeffrey prior Gamma prior
SRS RSS MRSSU SRS RSS MRSSU ¢ SRS RSS MRSSU SRS RSS MRSSU
3 0.4269 0.0916 0.0960 0.1957 0.0797 0.0824 1 0.1828 0.0650 0.0678 0.1143 0.0596 0.0614
-1 1.0034 0.1467 0.1587 0.4040 0.1121 0.1167
4 0.2138 0.0379 0.0429 0.1382 0.0380 0.0430 1 0.1151 0.0317 0.0355 0.0930 0.0318 0.0356
-1 0.4381 0.0464 0.0533 0.2253 0.0461 0.0528
5 0.1696 0.0264 0.0249 0.1145 0.0266 0.0256 1 0.0773 0.0235 0.0219 0.0669 0.0236 0.0224
-1 0.2051 0.0301 0.0287 0.1357 0.0304 0.0296
Table 3: Relative efficiency when 9=2, o =1, ﬂ =1landc=1], -1.
eff-Jeffrey (Sel) eff-Gamma (Sel) eff-Jeffrey (Lnx) eff-Jeffrey (Lnx)
M e e, 12 e, c e, e, e, e,
3 4.4469 0.9542 2.3750 0.9672 1 2.6962 0.9587 1.8616 0.9707
-1 6.3226 0.9244 3.4619 0.9606
4 4.9837 0.8834 3.2140 0.8837 1 3.2423 0.8930 2.6124 0.8933
-1 8.2195 0.8705 4.2670 0.8731
5 6.8112 1.0602 4.4727 1.0391 1 3.5297 1.0731 2.9866 1.0536
-1 7.1463 1.0488 4.5845 1.0270
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