# Analysis of various fractal dimensions at bifurcation points in a one dimensional non linear map 

Debasmriti Bhattacherjee ${ }^{{ }^{*} \text { * }}$, Anil Kumar Jain ${ }^{2}$<br>${ }^{1}$ Assistant Professor, Department of Engineering Science and Humanities, Siliguri Institute Of Technology , Siliguri, West Bengal , INDIA.<br>${ }^{2}$ Assistant Professor, Department of Mathematics, Barama College, Barama, Assam, INDIA.<br>Email: bdebasmriti@yahoo.com, jainanil965@gmail.com


#### Abstract

In this paper a unimodal map exhibiting period doubling bifurcation scenario has been considered. First of all period doubling bifurcation points have been calculated numerically and hence the accumulation point has been obtained. Secondly, box counting dimension, information dimension and correlation dimensions have been calculated on the set of attractors at the bifurcation parameters and have been found to be fractional. Key words: Unimodal map/Bifurcation/Accumulation point/Fractal Dimension 2010 AMS Classification: 37 G 15, 37 G 35, 37 C 45


*Address for Correspondence:
Ms. Debasmriti Bhattacherjee, Assistant Professor, Department of Engineering Science and Humanities, Siliguri Institute Of Technology, Siliguri, West Bengal , INDIA.
Email: bdebasmriti@yahoo.com
Received Date: 02/01/2016 Revised Date: 28/01/2016 Accepted Date: 08/02/2016

| Access this article online |  |  |
| :--- | :--- | :---: |
| Quick Response Code: | Website: |  |
| www.statperson.com |  |  |
|  | DOI: 24 February |  |
|  | 2016 |  |

## INTRODUCTION

Discovery of Feigenbaum Universality in case of one dimensional unimodal maps confirmed the onset of chaos ${ }^{4,5}$, however the detection of the accumulation point is generally confirmed by calculating Lyapunov exponents, fractal dimensions e.t.c ${ }^{7,9}$ Some aspects of chaos is the occurrence of fractional dimensions in the set
of strange attractor which is accompanied by sensitivity to initial condition ${ }^{1}$. Sensitivity to initial condition is often detected by positive Lyapunov exponents ${ }^{9}$. Various types fractal dimensions viz. capacity dimension, correlation dimension, information dimensioncan be calculated to detect the fractal property of the attractor set and for this an easy way is to calculate the generalized correlation dimension ${ }^{6,7}$.
In this paper, a difference equation $x_{n+1}=f\left(x_{n}\right)$ where $f(x)=a x^{2}-x^{3}, a$ being a control parameter is considered. In the first section an effort has been given to calculate the bifurcation points with the help of some numerical technique and with the help of these bifurcation points the onset of chaos i.e. the accumulation point has been calculated ${ }^{7}$.
In the second section various fractal dimensions viz capacity,.... have been calculated at each of the bifurcation points as well as at the accumulation point ${ }^{6}$.

## DYNAMIC SCENARIO OF THE MODEL

The discrete model for studying the dynamic scenario has been considered as:
$x_{n+1}=f\left(x_{n}\right)$ where $f(x)=a x^{2}-x^{3}$
The map is unimodal having the critical point as $\frac{2 a}{3}$. The domain and range of the map has been considered as $[0, a]$ and $\left[0, \frac{4 a^{3}}{27}\right]$ respectively. Fixed points of f are $x=0, x=\frac{1}{2}\left(a-\sqrt{a^{2}-4}\right), x=\frac{1}{2}\left(a+\sqrt{a^{2}-4}\right)$. The fixed point
$\frac{1}{2}\left(a-\sqrt{a^{2}-4}\right)$ is stable for $-\frac{4}{\sqrt{3}}<a<-2$ and the fixed point $\frac{1}{2}\left(a+\sqrt{a^{2}-4}\right)$ is stable for $2<a<\frac{4}{\sqrt{3}}$. So when $a>\frac{4}{\sqrt{3}}$ the fixed point $\frac{1}{2}\left(a+\sqrt{a^{2}-4}\right)$ becomes unstable and birth of periodic points of period 2 occurs[7]. The governing equations for obtaining the nth bifurcation point in the period doubling scenario are :
$f^{n}(x)=x$
$\frac{d^{n}}{d x^{n}} f(x)=-1$ $\qquad$
The bifurcation diagram obtained as


With the help of bisection method or Newton Raphson method the bifurcation points are calculated .The following table gives the bifurcation values and Feigenbaum delta at those points ${ }^{4,5}$.

Table 2.5:Showing values of bifurcation point for different periods and corresponding Feigenbaum delta value

| SI No | PERIOD | BIFURCATION PARAMETER | Feigenbaum delta |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 2.30940107076850 |  |
| 2 | 2 | 2.40075979942170 |  |
| 3 | 4 | 2.42095534000697 |  |
| 4 | 16 | 2.42530609392309 | 4.523707710494955 |
| 5 | 32 | 2.42530609392301 | 4.64185 |
| 6 | 64 | 2.42643893807937 | 4.66331 |
| 7 | 128 | 2.42648174618237 | 4.66796 |
| 8 | 256 | 2.42649091447946 | 4.66893 |
| 9 | 512 | 2.42649287805310 | 4.66914 |
| 10 | 1024 | 2.42649329859068 | 4.66919 |
| 11 | 2048 | 2.42649338865697 | 4.6692 |
| 12 | 4096 | 2.42649340794640 | 4.6692 |
| 13 | $2^{13}$ | 2.42649341207761 | 4.6692 |
| 14 | $2^{14}$ | 2.42649341296240 | 4.6692 |
| 15 | $2^{15}$ | 2.42649341315189 | 4.66914 |
| 16 | $2^{16}$ | 2.42649341319246 | 4.66933 |
|  |  |  |  |
| 17 | $2^{17}$ | 2.42649341320115 | 4.67066 |
| 18 | $2^{18}$ | 2.42649341320310 | 4.66864 |
| 19 | $2^{19}$ | 2.42649341320344 | 4.45639 |

The accumulation point is obtained as 2.426493413203533 using the formula $A_{\infty}=\frac{A_{2}-A_{1}}{\partial}+A_{2}$ [7].

## CALCULATION OF DIMENSIONS OF THE MODEL

To measure the dimension of the attractor set at various bifurcation parameters we study information dimension, box counting dimension and correlation dimension. For easier calculation, we take the help of generalized correlation sum $\mathrm{G}_{\mathrm{q}}$ ( $\mathrm{N}, \mathrm{R}$ ) [2,6].
$\mathrm{G}_{\mathrm{q}}(\mathrm{N}, \mathrm{R})=\left[\frac{1}{N} \sum_{j=1}^{N}\left[\frac{1}{N-1} \sum_{k=1, k \neq j}^{N} \theta\left(R-\left|x_{j}-x_{k}\right|\right)\right]^{q-1}\right]^{\frac{1}{q-1}}$.

Where $\theta\left(R-\left|x_{j}-x_{k}\right|\right)=1$ if $\left|x_{j}-x_{k}\right|<R$
$=0$ if $\left|x_{j}-x_{k}\right|>\mathrm{R}$,
Here, $x_{j}$ represents the points in attractor set, N is the number of points from the attractor set to be considered for computation.
Further if $\quad \lim _{N \rightarrow \infty} G_{q}(N, R)=G_{q}(R)$, then

$$
\begin{equation*}
\mathrm{D}_{\mathrm{q}}=\lim _{R \rightarrow 0} \frac{\log G_{q}(R)}{\log R} \tag{3.2}
\end{equation*}
$$

We can see that $\mathrm{D}_{\mathrm{q}}$ can be calculated by calculating the generalized correlation sum for any value of q . In particular for $\mathrm{q}=0,1,2$, from equation (3.2) we can get box counting, information and correlation dimensions respectively[2,6].

Table 3.3: Showing correlation, capacity counting and information dimension values at different bifurcation point as well as the
accumulation point

| Bifurcation Point | Correlation dimension | Capacity dimension | Information dimension |
| :---: | :---: | :---: | :---: |
| $1^{\text {st }}$ | $0.886062 \pm 0.0560411$ | $0.619973 \pm 0.0310977$ | $0.871432 \pm 0.0729271$ |
| $2^{\text {nd }}$ | $0.874087 \pm 0.0601341$ | $0.609418+0.0260449$ | $0.87494 \pm 0.0278821$ |
| $3^{\text {rd }}$ | $0.846431 \pm 0.0427153$ | $0.601587 \pm 0.00911772$ | $0.844317 \pm 0.0277732$ |
| $4^{\text {th }}$ | $0.766005 \pm 0.0484502$ | $0.588318 \pm 0.0223249$ | $0.775496 \pm 0.0507602$ |
| $5^{\text {th }}$ | $0.541872 \pm 0.0889689$ | $0.618134 \pm 0.0582998$ | $0.690836 \pm 0.0671456$ |
| $6^{\text {th }}$ | $0.530912 \pm 0.0822595$ | $0.618355 \pm 0.0597909$ | $0.637085 \pm 0.0487259$ |
| $7^{\text {th }}$ | $0.459791 \pm 0.064768$ | $0.79328 \pm 0.0754558$ | $0.559285 \pm 0.0687621$ |
| Accumulation point | $0.499406 \pm 0.0621438$ | $0.562222 \pm 0.0881152$ | $0.528257 \pm 0.0550878$ |

Slope of the following diagram represents the dimensional value.


Fig 3.4 : $\log G_{q}(R)$ versus $\log R$ for $q=0,1,2$ respectively for the first bifurcation point


Fig3.6: $\log G_{q}(R)$ versus $\log R$ for $q=0,1,2$ respectively for the $3^{\text {rd }}$ bifurcation point



Fig3.8 $: \log G_{q}(R)$ versus $\log R$ for $q=0,1,2$ respectively for the $5^{\text {th }}$ bifurcation point


Fig3.9 : $\log G_{q}(R)$ versus $\log R$ for $q=0,1,2$ respectively for the $6^{\text {th }}$ bifurcation point


Fig3.10: $\log G_{q}(R)$ versus $\log R$ for $q=0,1,2$ respectively for the $7^{\text {th }}$ bifurcation point

## CONCLUSION

It has been observed that the dimension values are fractional at the bifurcation as well as accumulation point maintaining a good agreement with the literature $[4,5,8]$.

## REFERENCES

1. Devaney, R.L., "An Introduction to Chaotic Dynamical Systems", Addition-Wisley(1989).
2. Dutta T.K,Bhattacherjee D,"Bifurcation points, Lyapunov exponent and Fractal dimensions in a non linear map", Advances in Theoretical and Applied Mathematics, Volume 7(2012) ,223-235
3. Dutta T.K, Jain A.Kr, Bhattacharjee D, " period doubling scenario in a one dimensional non linear map", IJMSEA(2012) Volume 6, 259-270
4. Feigenbaum, M.J., " Universility Behavior in nonlinear systems", Los Alamos Science,1.(1980),4-27.
5. Feigenbaum, M.J., "Qualitative Universility for a class of non-linear transformations", J.Statist.Phys,19:1(1978),25-52.
6. Grassberger, P., "Generalized Dimension of the Strange Attractors". Physics Letters,Vol-97A,No6,1983.
7. Hilborn, R.C., "Chaos and Non-linear dynamics",Oxford Univ.Press. 1994.
8. Hao, B., "Critical Slowing Down in One Dimensional Map and Beyond", J.Stat.Phy.Vol-121, No-5/6, 2005.
9. Wolf, A. ,Swift , J.B. , Swinney ,H.L. ,Vastano , J.A. "Determining Lyapunov Exponents From a Time Series". Physica 16D,(1985)285-317.

Source of Support: None Declared Conflict of Interest: None Declared

