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INTRODUCTION 
Topological conjugacy has so importance as it can protect 

many topological dynamical properties. Therefore, if we 

can find topolological conjugacy between a map 

another map, then we can investigate the map 

in sequence about dynamical properties of the previous 

map �. The logistic map appears very frequently as 

models of real-life dynamical systems, for example in 

biology. Many chaotic properties of the logistic map,

 �� ��� � ���1 
 ��, 0 
 � � 4, 0 
 � �
for m = 4 can be studied through the topological

conjugacy with the tent map:  

 ���� � �  2� �� �� �0, ���
2 
 2� ���� �� � , 1�  

The tent map turns out to be easier to analyse, since it can 

be studied using dual expansions similarly to the doubling 

map (in particular, we can find all periodic points and 
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Topological conjugacy has so importance as it can protect 

many topological dynamical properties. Therefore, if we 

can find topolological conjugacy between a map � with 
we can investigate the map � to obtain 

in sequence about dynamical properties of the previous 

The logistic map appears very frequently as 

life dynamical systems, for example in 

biology. Many chaotic properties of the logistic map, � 1 
for m = 4 can be studied through the topological-

The tent map turns out to be easier to analyse, since it can 

be studied using dual expansions similarly to the doubling 

map (in particular, we can find all periodic points and 

create dense orbits). We have already seen that conjugacy 

maps periodic points of period n to periodic points of 

period n
1
. 

Definition: 1.1. The dynamical system defined by �: � → � is the family of functions 

each �� mapping � �� �. For example let 

by ���� �  !. Then the dynamical system defined by 

the family of functions given by �
Definition 1. 2. The functions 

(and the dynamical systems defined by them) are said to 

be topologically conjugate if there exists a 

homomorphism ": � → # such that

function h is called a topological conjugacy between� $%& �. Topological conjugacy is defined by the 

following figure. It is with the aim of both routes from the 

upper-left X to lower-right Y –from corner to corner 

top, then the right side, and down the left side

the bottom-give the same result

diagram commutes.  
  

Figure 1: 
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create dense orbits). We have already seen that conjugacy 

f period n to periodic points of 

1.1. The dynamical system defined by 

is the family of functions ���'�∈)*, with 

. For example let �: + → + given 
Then the dynamical system defined by �is ����� � � 3�- . 

The functions �: � → � and �: # → # 
(and the dynamical systems defined by them) are said to 

be topologically conjugate if there exists a 

such that ��" � "��.The 
function h is called a topological conjugacy between 

. Topological conjugacy is defined by the 

following figure. It is with the aim of both routes from the 

from corner to corner the 

and down the left side, then across 

give the same result. we can state that the 
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For example: We have the dynamics of the functions ���� � 2� $%& ���� � 3� become visible the same. In 

both the cases 0 is a fixed point, and all additional orbits 

continue either on the positive or negative side of 0 and 

move about outer from 0.In fact, these two functions are 

topologically conjugate. The function ": + → +, defined 
by "��� � �./01�!�, is a homomorphism so as to 

satisfy ��" � "��. Theorem: 1. Let us consider " be a 
topological conjugacy between �: � → � and �: # →#.For all � ∈ �$%& % ∈ 23, we have "������� ����"����. As a result " maps the orbit � 5%&67 � to the 
orbit of "��� under �. proof: It can be prove by induction 
on %. By the definition of topological conjugacy, for % � 1 the result holds. Let us assume that the result holds 

for % 
 1. Then we have, "8�����9 � "���:�8����9� �  ��:��"8����9 �  ��:���8"���9� �  ��8"���9. 
Where the second equality holds by the inductive 

supposition. Hence if the result holds for % 
 1, then it 
holds for %,.therefore, by induction "������ �  ���"���� 
for all % ∈ 23.  
Proposition: Let us consider " be a topological 

conjugacy between �: � → �$%&�: # → # and suppose 
that � ∈ � Then we have the following results hold: 

1. If � is a fixed point of �,then "��� is a fixed 
point of �.  

2. If � is a period-m point of �, "��� is a period –m 

point of �.  

3. If � is an concluding fixed point of �,then "��� 
is an concluding fixed point of �. 

4. If � is an concluding periodic point of �,then "��� is an concluding periodic point of �. 
Definition: 1.3. Let us consider � be a topological space. 
A function �: � → � is said to be chaotic or to have chaos 
if  

1. The set of periodic points of � is dense in X. 
2. For every U, V open in �, there exists ��; and %�23 such that ������<.  

The first condition indicates that there is regular periodic 

20ehaviour densely spread throughout the region. It does 

not matter what point we choose in the region, there are 

periodic points randomly close in. The second condition, 

referred to topological transitivity, indicates that every 

pair of regions in the domain is mixed together by the 

system. For any pair of open sets, there is at least one 

point in the first set that, on a number of iteration, is 

mapped into the set. Let us consider the tent function  

���� � �  2� �� �� =0, 12>
2 
 2� ���� =1 2 , 1>$%& 

The following figure shows the graph of �!$%& �?. The 
pattern is apparent. The graph of �� results in a ‘tent’ 
over [ ABC1DBC, A1DBC ] for each F � 1,2, … … … 2�:�. It follows 
that each such interval contains two intersections of the 

graph of �� with the line H � �. These intersection points 
are periodic points of �. Thus as % gets larger and larger, 
the intervals [ ABC1DBC, A1DBC ] partition [0,1 ] into smaller and 

smaller intervals, each of which contains periodic points. 

 

 
Figure 2: Graph of �! and �? 

 

Furthermore, �� maps each interval I ABC1DBC, A1DBCJonto [0,1 ].As a result as % gets larger and larger, smaller and 

smaller intervals are getting extend out “mixed” by �� 
over the entire interval [0,1 ]. Thus the two major 

mechanism of chaos appear to be present in the tent 

function. In a set of accompanying implement at the end 

of this section, we work through the details in this regard 

to proving that � is chaotic. On the other hand, we will 
now take a different process to proving that � is chaotic; 

this process is based on binary expansions of the real 

numbers in [0,1 ].In particular, we use the fact that every � �[0,1 ] can be defined in form  KC� + K1�1 +  … … . . … … … . + KM�M + … … … ….. 
Here each  $N equals either 0 or 1. For such �, we have 
the binary expansion � �. $�$�$! … . . $� … … 

For $ � 0 �7 1, we let $∗ � 1 
 $. It is to note that �$∗�∗ � $. Again, if � has binary expansion. 
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$�$�$! … . . $� … … … … …. than 1 
 � has binary 

expansion. $�∗$�∗ … … … . $�∗ … … … ..  
 Now, if � ∈  �0, ��� then � has a binary expansion in the 
form. 0$�$! … . . $� … …, and it follows that 2� �2 PQ� + K1�1 + … … . . … . + KM�M + … … R �. $�$! … . . $� … 

Furthermore, if � ∈ ��� , 1�, than � has a binary expansion 
in the form. $�$! … . . $� … …, so 1 
 � � .0$�∗ … … … . $�∗ … … …., and 2 
 2� �. $�∗$!∗ … … … . $�∗ … … ….,.(Here it is to be noted that 
binary expansions are not unique. for example, 1 2-  can 

be expressed as both. 1000000 … and. 01111111 … .., 
and for that reason we include 1 2-  in each of the 

possibilities, � ∈  [0, � �] and � ∈  [� � , 1], obtainable here. 
) 

Therefore, by using binary expansions, we can state the 

tent function � ∶ [0,1] → [0,1]. as follows : ��. $�$�$! … . . $� … … �� � . $�$! … . . $� … … ��$� � 0. $�∗$!∗ … … … . $�∗ … ��$� � 1 
For example ��. 00000 … … � � .00000 … … confirming 

the fixed point at 0. The binary expansion for 1 is. 111…., 

and ��. 111 … … � � .0000 … .., so ��1� � 0. For 2 3⁄ , 

the binary expansion is. 1010 … .., and ��. 1010 … … � �.1010 … ; thus 2 3⁄  is a fixed point. For 2 5⁄  we have 

binary expansion. 01100110 …, and ��. 01100110 … … � � .01100110 … . . � 4 5⁄ , on the 

other hand, ��.11001100 … . . � � .011011 … . �  2 5⁄ . Therefore, as 

we saw in the previous portion, we have period-2 points 

at 2 5⁄  $%& 4 5⁄ .  

With the help of above explanation on �, we can also 
express the value of ���. $�$�$! … . . $� … … �, as the following lemma 

indicates: 

Lemma 1: For. $�$�$! … . . $� … … ∈ [0,1] $%& % ∈ 23,  ���. $�$�$! … . . $� … … �� � . $�3�$�3� … . . … … ��$� � 0.. $�3�∗$�3�∗ … … … . … ��$� � 1. 
Proof: We can prove this by the induction process on n. 

By the definition the result holds for % � 1. Let us 
assume that the result holds for n
1. Then ���. $�$�$! … . . $� … … �� �8��:��. $�$�$! … . . $� … �9 
 � � ��. $�$�3� … . . … … � ��$�:� � 0.��. $�∗$�3�∗ … … … . � ��$�:� � 1. 
Where the second equality holds by the inductive 

supposition. Now if $� � 0 ; then ���. $�$�$! … . . $� … … � equals 

either ��.0$�3�$�3� … . . … … � or ��. 1$�3�∗$�3�∗ … … … . �. 

In either case, by the definition of �, the result is . $�3�$�3� … . . … …, at the same time as preferred. 

 Now let us assume that $� � 1. Then  ���. $�$�$! … . . $� … … � equals either ��. 1$�3�$�3� … . . … … � or ��. 0$�3�∗$�3�∗ … … … . �, 
and in either case we get the preferred result . $�3�∗$�3�∗ … …. Thus, if the result holds for % 
 1 it 
holds for %, and it implies by induction that the result 

holds for all % ∈ 23. In our proof that � is chaotic we 
have used the following lemma, which indicates that if 

two points in [0,1] have connected binary expansions that 
concur in their first % entries, then the distance between 
those two points is at most 

��D. Lemma 2. Let � $%& H 
have binary expansions. $�$�$! … . . $� … .. and. W�W�W! … . . W� …., respectively. If $N � WN��7 � �1,2, … . . %, then |� 
 H| � ��D.  
Proof: We have  

|� 
 H| � Y Z $[ 
 W[2[
∞

[\�3� Y 
� Z  | $[ 
 W[2[

∞

[\�3� | 
 � Z 12[ ∞

[\�3� 8]�%^6_$[ 
 W[_ � 19. 
� 12� Z 12[

∞

[\�  

� ��D  � ]�%^6 ∑ ��A∞[\� � 1�.  
Now we have established that � is chaotic. 
Theorem: 2. The tent function is chaotic. 

Proof : Let us start by establishing with periodic points of � are dense in [0,1]. It is sufficient to prove that if � ∈ [0,1] and � > 0, then there is a periodic point b such 
that |� 
 b| 
 c. Thus let � ∈ [0,1] and c > 0 be 

arbitrary. Let us consider that. $�$�$! … . . $� … .. is a 
binary expansion of � and % ∈ 23 is large enough 
that ��D 
 c.  
If we consider b �. $�$�$! … . . $�0. $�$�$! … . . $�0. $�$�$! … . . $�0 … . . … . . … ..
,  

 then by using Lemma 1. we have that b is a periodic 
point, and Lemma 2 implies that |� 
 b| 
 c. Thus 
periodic points of � are dense in [0,1].  
Now to show the topological transitivity, let us consider ; $%& < be open in [0,1], and let � �. $�$�$! … $� … ∈;. be arbitrary. Since ; is open, therefore there exists c > 0 such that �� 
 c, � + c� ∩ [0,1] ∈ ;. Let % ∈ 23 be 
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large enough as 
��D 
 c. Again let H �. W�W�W! … . . W� … ∈ <, and consider the point b such 

that,  b �. $�$�$! … . . $�0W�W�W! … .. 
Now with the help of lemma 2. |� 
 b| � ��D 
 c, and 
therefore b ∈ ;. Hence from lemma 1, we have ��3��b�  � H ∈ <. It shows that � is topological 

transitive and consequently it is chaotic. 

Transitivity:
2,4
 

Occasionally for a given dynamical system �: � → �, 
when we iterate �Q ∈ �, the orbit e��Q� � ��Q, ���Q�, … … . . ', spreads itself consistently 
over �, as a result that e��Q� is a dense set in �. Hence �: � → � is said to be topologically transitive if there 
exists �Q ∈ � such that e��Q� is dense subset of �. If � is 
transitive, then there is a dense set of transitive points, 

since each point in e��Q� will be a transitive point2. 
 Proposition: 2. If �: � → �$%&�: # → # are maps 

conjugate via a conjugacy ": � → # ∶  "�� � ��", then  
1 "��� � ���" ��7$ff % ∈23 , ��� $%&��$76 $f]� ^�%F5�$��g6 �. 
2.h�^ �] $ b��%���b67��& � ��7 �, �"6% "�^� �] $ b��%� �� b67��& � ��7�, ^ �] $��7$^��%� ��� "�^� �] $��7$^��%�.  
3. � �] �7$%]���g6 ��� � �] �7$%]���g6.  
4. � "$] $ &6%]6 ]6� �� b67��&�^ b��%�] ��� � "$] $ &6%]6 ]6� �� b67��&�^ b��%�].  
 5. � �] ^"$���^ ��� � �] ^"$���^.  
Proof: 1. "��� �  "���� �  ��"�� �  ����" �  ���", 
and in the same way

  "��! � �!�", and continuing in this 
way we have by induction process the result follows. 

2. Suppose that �N�^� ≠ ^��7 0 
 � 
 �and ���^� � ^ 
then "��N�^� ≠ "�^���7  0 
 � 
 � since " is one -to–one, and as a result  �N�"�^� ≠ "�^� ��7 0 
 � 
 �.  
In addition, "����^� � ���"�^�, or "�^� � ��8"�^�9, 
so "�^� is a period � point for �. 
 We shall only to show that if b is an attracting fixed 
point of �, (there exist an open sphere jk�b� such that � ∈ jk�b� �"6% ����� → b $] % → ∞ ), then "�b� is an 
attracting fixed point of �.  
 Let < � " �jk�b��, then since " is a homomorphism, < 
is open in # and contains "�b�. Let H ∈ <, then ":� �H� ∈jk�b�, so that ���":� �H�� → b as % → ∞. 

 Since " is continuous, "����":� �H��� → "�b� as % →
∞, i.e. ���H� � "����":��H� → "�b�, $] % → ∞. So "�b� is 
attracting. 

3. Let us Suppose that e�l� � �l, ��l�, ���l� … … . . ' is 
dense in � and consider < ⊂ # be a non-empty open set. 

Then since " is a homeomorphism, ":��<� �] �b6% �% �, 
and hence there exists n ∈ l3 with ��o�l� ∈ ":��<�. 
 It follows that " P�o�l�R � �o8"�l�9 ∈ <, so that  e�"�l�� � �"�l�, �8"�l�9, ��8"�l�9, … … . . ' is dense in #, i.e. � is transitive. Similarly, if � is transitive, then � is 
transitive.  

4. Suppose that � has a dense set of periodic points and 
let < ⊂ # be non-empty and open. Then ":��<� �] �b6% �% �, so contains periodic points of �. As 
in (3), we see that < contains periodic points of �. 
Similarly if � has a dense set of periodic points, so does.  
5. (3) and (4) together implies this result.  3. p 
 qrqstu v. w p 
 qrqstu xy ztp{ |}~. [ �, �]. 

1. The tent map � has two fixed points. One is at 0.. 
The slope of � at the fixed points is 2 so they are 
repellors. 

2. ��� has 2� fixed points. Two are fixed points of �. Two extra fixed points of ��� form a 2-cycle 

of �. All are repellors.  
3.  ����� has 2! fixed points. All repellors. Two 

are fixed points of �. The remaining six form two 

three cycles. 

4. . �? has  2? 4 
 ^H^f6]. 2� are fixed points of ��. The remaining 12 form three four cycles. 

5.  The graph of �� consists of 2�:� tents of 
width 2�:�. Each tent has two % 
 ^H^f6] one on 
theleft side and one on the right. 

6. The distance between adjacent % 
 ^H^f6] is no 
larger than 2�:�. Adjacent % 
 ^H^f6] are 

connected by the graph rising to the top and 

bouncing back to 

7.  H � � or sinking to the floor and bouncing back. 
The slopes of the segments are equal to 2�3�. 
And it gives the lower bound. 

8. For any compact subinterval [$, W] ⊂ �0,1] there 
is a constant ^ ∈ �$, W� independent of % to that 
the distance between adjacent % 
 ^H^f6] in [$, W] satisfies  ^2:� 
 &�]�6%^6 
 2:�. 

 3.2 p 
 qrqstu of the Logistic Map.[2] 

There are similar results for the logistic map ���� �4��1 
 �� �7�� [0,1] to itself. 
1. The logistic map � has two fixed points. One is 

at 0. Both are repellors.  

2. . ��� has 2� fixed points. Two are fixed points of � and the other two form a 2 
 ^H^f6]. all 
unstable. 

3.  �! has 2! fixed points. Two are fixed points. 
The remaining six form two three cycles. 



Anil Kumar Jain 

Copyright © 2016, Statperson Publications, International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 24 Issue 3    2017 

4.  �? has 2? fixed points. 2� are fixed points of ��. 
The remaining 12 form three four cycles. 

5. The graph of �� consists of 2�:� fingers with 
width � 1 2�:�- . Each tent has two % 
 ^H^f6]. 

6. The distance between adjacent n-cycles is no 

larger than 2 2�:�- . 

7. For any compact subinterval [$, W] ⊂ �0,1] there 
is a constant ^ ∈ �$, W�independent of % to that 
the distance between adjacent [$, W] ⊂ �0,1] 
there is a constant^ ∈ �$, W� independent of % 
 ^H^f6] �% [$, W]is no smaller than ^2:�.  

8. The proof is as for the tent map. The graph must 

reach the top or the bottom and return. It 

covers a vertical distance that is bounded below. For the 

one tenth of the path that is nearest the top or bottom the 

slope is bounded above by ^2�. Mutually it gives the 

lower bound. For both logistic and tent maps the set of all 

cycles is dense in [0,1].Which is one of the important 

characteristics of chaotic maps. 

4. Conjugations and p 
 qrqstu.2 
Definition: A homeomorphism h is a conjugation between 

maps � $%& � when  � � ":�� � � ". 
1. Then � �] $% % 
 ^H^f6 �� � if and only 

if "����] $% % 
 ^H^f6] �� �.  
2.  " is a homeomorphism of [0,1] when and only 

when " is a surjective strictly monotone map. It 

is increasing when "�0� � 0 and decreasing in 
case "�0� � 1. Since the tent map and the 

logistic map have only one endpoint that is a 

fixed point and that is 0, any conjugation must 

map 0 to itself. Therefore any conjugation is 

strictly increasing with "�1� � 1. 
3. It follows that for each% any conjugation of the 

tent map to the logistic map must map the % 
 ^H^f6] of the tent map to the % 
 ^H^f6] of 
the logistic map preserving the order. Thus any 

conjugation is uniquely determined on the set of 

all cycles. 

4. Since the set of all cycles of the tent map are 

dense, and hence there is at most one 

conjugation. 

Theorem 4.1 The tent map is topologically conjugate to 

the logistic map. 

Proof. Step I. If there is a conjugacy then it values at the 

endpoints and all % 
 ^H^f6] is uniquely determined. The 

conjugation " must take the nonzero fixed point of � to 
the non zero fixed point of �. The fixed points of ��� must be mapped to the same number of fixed points 

of ��� in increasing order. The mapping on the fixed 

points of � has already been assigned. It is not clear that 
the fixed points of ���can be mapped in increasing order 

while in respect of the previous obligation. For example, 

if there were two fixed points of ��� between the fixed 
points of � and only one fixed point of ��� between the 
fixed points of �.  An essential and adequate condition for 
being able to allocate values constantly is as follows. For 

each % $%& 1 � � � 2� denote by ��,� the ���% 
^H^f6 of �� counting from the left and H�,� the 

equivalent cycles for ��. The eaac is that for each n 
% and 1 � F � 2o . �[,o ∈ ]��,�, ��3�,� ] iff H[,o  ∈ ]H�,�, H�3�,� ]. For the convenience that this is satisfied, 
consider the F�� fixed point of �o. It is in one of the 
intervals of length 2o. Consider that interval J. All the 
intervals of size 2� lying to the left of the interval contain 
fixed points of �� that lie to the left. To make a decision 

for the ranking, we needs only to consider the intervals of 

width  2� starting at the left endpoint of J. For intervals of 
length 2� consider them as open on the left and closed on 

the right. Then the fixed point lies in exactly one of the 

intervals of size 2� whose union in J.Let us consider that 
interval as K. Of the two fixed points of �� in K, F�� one 
is either to the left or the right of centre. This can be 

reproduce for the logistic map and it shows that the 

ranking of the F�� fixed point of �o among the fixed 

points of � is exactly the same. In this way the value 

of " �% $ff % 
 ^H^f6] is exclusively determined. This 

determines " on a dense subset. Step II. It suffices to 
show that the mapping defined on the cycles extends to a 

continuous Function on [0; 1]. Since the constraint of " to 
the set of cycles is strictly increasing it follows that any 

continuous extension is non decreasing. To show that it is 

strictly increasing suppose that �� 
 �� , let us consider 
two cycles 

~�� 
 ~�� between �� $%&�� . Therefore we 
have "��� � 
 " P ~��R 
 " P ~��R 
 "��� �, which shows 
that " is strictly monotone. 

Step III. Construction of a continuous extension. 

To extend to the open subinterval �0,1]it sufficient to 
extend to each compact subinterval  [$, W] ⊂ �0,1]. To extend to [$, W] it is sufficient (and 
necessary) to show that if   l� ≠ �� are sequences of cycles in [$, W]with l� 
 �� →0 then "�l�� 
 ���� → 0. 
Now to verify the sufficient condition, let us denote 7�%� $%&]�%� be the degrees ofl�$%&�� respcetivly. 
Renaming l�$%&�� we may suppose that 7�%� ≥ ]�%�. 
Since 0 ≠ l� 
 �� → 0, it follows that 7�%� → ∞. 

In addition the nearest 7�%�^H^f6 ~ l�to �� and further 
from l �is at most 2:� further from l�. Hence  l� 
 ~l� →
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0. Again consider the ranks of l�$%& ~l�among fixed 

points of �� differ by F� > 0. Then we have l� 
 ~l� →
0 iff  F� 2�- → 0. In this case the images "�l�� $%& �� ~l�� are fixed points of  �� and "� ~l�� is the F��� neighbour of "�l�� among such cycles. It shows that �"�l��  
 " P ~l�R� � ^2:� → 0. Since "���) lies between l�$%& ~l�.  Hence |"�l��  
 "����|� |"�l�� 

" P ~l�R | → 0. This satisfies the sufficient condition for a 
Continuous extension. Therefore � extends to a 

continuous function on �0, 1�. Now for the entire proof it 
is sufficient to show that f�� →Q�� � � 0 $%& 1. and f�� →����� � 1. The largest % 
 ^H^f6] �� of the tent map 

and its image H�both converge to 1. Again as � is 

monotone with the values in [0,1 ] $%& it implies that as � → 1, "��� → 1. Let us Consider the least % 
^H^f6] �0, 1� proves that lim →Q "��� � 0. Therefore " is 

extended so that "�0� � 0 and "�1� � 1 is continuous 
on [0,1].  
 

CONCLUSION 
From the above discussion we conclude that the logistic 

map and tent map are topological conjugate. 
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