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INTRODUCTION 
The concept of generalized order statistics ( gos ) was given by Kamps (1995), which is given as below: 

Let nXXX ,,, 21 
  be a sequence of independent and identically distributed )(iid random variables )(rv with 

absolutely continuous distribution function )(df )( xF and the probability density function )( pdf )( xf , ).,( x  

Let Nn , 2n , 1k , m~ 1
121 )...,,,( 
  n

nmmm , 





1n

rj
jr mM , 11  nr , be the parameters such 

that 1 rr Mrnk , for all }1,.,2,1{  nr  . Then ),~,,( kmnrX , nr ,,2,1   are called gos  if 
their joint pdf  is given by 

 ),,,( 21),~,,(,),,~,,1( nkmnnXkmnX xxxf   
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on the cone )1()0( 1
1

1   FxxF n , 

where )(1)( xFxF  . 
Here we may consider two cases: 

Case I. ji   i.e. mmmm n  121  . 

Case II. ji   , 1,,2,1,  nji  . 
For case I, gos  will be denoted as ),,,( kmnrX  and its pdf  is given by Kamps(1995) 
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and the joint pdf  of ),,,( kmnrX  and ),,,( kmnsX , nsr 1 , is 
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and 

)0()()( mmm hxhxg  , )1,0[x . 
For case II, the pdf  of ),~,,( kmnrX  is Kamps and Cramer (2001) 
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and the joint pdf  of ),~,,( kmnrX  and ),~,,( kmnsX , nsr 1 , is 
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Consequently the pdf  of ),~,,( kmnrX  and the joint pdf  of ),~,,( kmnrX  and ),~,,( kmnsX  reduce to the pdf  
of ),,,( kmnrX  and the joint pdf  of ),,,( kmnrX  and ),,,( kmnsX , respectively. Several models of ordered 
random variables such as order statistics and record value can be seen as special cases of gos . If 0m and 1k , then 

),,,( kmnrX  reduces to the thr order statistic nrX : David and Nagaraja (2003). If 1m and 1k , then 

),,,( kmnrX  is the thr record values from an infinite sequence of iid srv' Ahsanullah (1995). Other special cases are 
t hk  record values ( 1, )m k   � , Dziubdziela and Kopociński (1976), sequential order statistics 

  1 21 ; , , , 0i i nn i         and order statistics with non–integral sample size  
( ,,1,0 nnkm    Stigler (1977), Rohatgi and Saleh (1988)). 
Many authors utilized the concept of gos in their studies. References may be made to Kamps and Gather (1997), 
Keseling (1999), Cramer and Kamps (2000), Ahsanullah (2000), Pawlas and Szynal (2001),Ahmad and Fawzy (2003), 
Ahmad (2007), Khan et al. (2007),Athar et al. (2012),Saran et al.(2015), Khan and Khan (2016) among others. For 
textbook reference, one may referrred to Ahsanullah (1995), Ahsanullah and Nevzorov (2001), Kamps (1995) and 
Arnold et al. (1992). In this paper, we have obtained the recurrence relation of gos  arising from the Sushila distribution. 

A random variable  rv X is said to have a Sushila distributionShanker et al.(2013) if its df asgiven by 

   
 

1
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0,0,0  x        (1.6) 

and thecorresponding pdf is given by 

(ݔ)݂ =
 

2
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1

xx e



  
    

0,0,0  x .       (1.7) 

The Sushila distribution given in (1.7) was introduced by Shanker et al. (2013). At 1 , it reduces to Lindley 
distribution (Lindley,1958)) having pdf as given by 

   
2

1 ;
1

xf x x e 


 


,0,0  x         (1.8) 

(Ghitany et al., 2008) have explored some interesting properties of this distribution and showed that Lindley distribution 
gives better lifetime model than the exponential distribution in applications. Sankaran (1970) introduced the discrete 
Poisson-Lindley distribution after mixing Poisson and Lindley distribution. Zakarzadeh and Dolati (2009) introduced the 
generalization of Lindley distribution having three parameters. 
It is observed that Lindley distribution is a particular case of (1.7). The pdf (1.7) can be shown as a mixture of 

exponential 



 
 
 

and gamma 2,


 
 
 

 distribution as follows: 

       1 2; , 1f x pf x p f x               (1.9) 
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The relation between (1.6) and (1.7), we have  

      21 1 1xx fx F x   


      
         

(1.10) 

The relation (1.10) is used for obtaining the recurrence relations for moments of gos from Sushila distribution. In this 
paper, we have established recurrence relations for single and product moments of generalized order statistics from 
Sushila distribution. This paper comprise three sections. In Section 2, we have established the recurrence relation based 
on single moment of generalized order statistics from Sushila distribution. In Section 3, we have obtained the recurrence 
relation based on product moment of generalized order statistics from Sushila distribution. 
 
RECURRENCE RELATIONSFOR SINGLE MOMENTS 
Theorem 2.1: Let X be a non-negative continuous random variable and follows Sushila distribution given in (1.7). For 

Case II  , 1,2, , 1i j i j n     , 1, 2,k   , n� , 1 r n  , 0,1, 2,l    
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Proof.We have 
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On using equation (1.10), we have  
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Integrating by parts treating lx  as integration and rest of the part for differentiation. 
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substituting the value of the integral I and II in equation no(2.3), we have 
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and hence the result.  

Corollary 2.1: For 1 2 1nm m m m    , the recurrence relation for single moments of gos from Sushila 
distribution has the form 
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(2.3) 

Remark 2.1: At 1  in (2.3) we get the recurrence relation for single moments of generalized order statistics from 
Lindley distribution. 
Remark 2.2:Recurrence relation for single moments of order statistics (at )1,0  km  from Sushila distribution is 
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Remark.2.3:Recurrence relation for single moments of thk upper record  1m  from Sushila distribution is  
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RECURRENCE RELATIONS FOR PRODUCT MOMENTS 
In this section, the recurrence relation for product moments of gos from Sushila distribution has been obtained. Particular 
cases for recurrence relations of order statistics and thk  upper record are also discussed. 
Theorem 3.1: Let X be a non-negative continuous random variable and follows Sushila distribution given in (1.7). 

Let case II be satisfied i.e.  , 1,2, , 1i j i j n     . For Sushila distribution as given in (1.7) and 
1, , ,1 , 2,k n N m R r s n s r        and , 0,1, 2 ,u v    
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On substituting f(y) in above equation  
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Where 1( )I x is given by 
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Therefore  
)()()( 21 xIxIxI   

On substituting ( )I x  in (3.2), we get 
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and hence the result given in (3.1). 

Corollary 3.1:For 1 2 1nm m m m    , the recurrence relation for product moments of gos from Sushila 
distribution has the form 
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Remark 3.1: At 1 in (3.4) we get the recurrence relation for product moments of generalized order statistics from 
Lindley distribution. 
Remark 3.2: Recurrence relation for product moments of order statistics (at )1,0  km  from Sushila distribution is 
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: : : :1 u v u v

r n r n r n r nE X X E X X            
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Remark 3.2:Recurrence relation for product moments of thk  upper record  1m from Sushila distribution. 
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