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Abstract: The block designs for observations correlated in one 
dimension and the universal optimality on Nearest Neighbor 
Balanced Block Designs (NNBD) using first order and second 
order correlated models (AR(1), MA(1) , ARMA (1,1) ,AR(2) 
and MA(2)) were investigated by SANTHARAM and 
PONNUSAMY (1996). In this paper we have investigated and 
addressed the MV-optimality Nearest Neighbor Balanced Block 
Designs (NNBD) using AR(1), MA(1) , ARMA(1,1) ,AR(2) and 
MA(2) models.   
Key words: Auto-regressive model; Moving average model; 
ARMA model. Optimal experimental design: MV-optimality. 
 

1. Introduction:  
Serology is a branch of Biometrics which is 

concerned with the study of virus and viral 
preparations. Many studies concerned with viral 
preparation require the arrangement of antigens in a 
place so that each antigen has two other antigens as 
its neighbours. In analysis of such experiment the 
classical design may not perform efficiently. 
Therefore Rees, D. H.  (1967) introduced neighbour 
structure. The following is the experiment considered 
by Rees, D. H.  (1967) Nearest Neighbour Balanced 
Block Design. As seen in the figure1 the 
observations are available are correlated, therefore 
the usual assumption like independence of 
observation in the analysis of classical comparative 
experiments may not be valid. Therefore there is 
necessity for the use of Nearest Neighbour Balanced 
Block Design. 

In biometrical science we can cite many areas 
where this kind of correlated structure exists. Now 
consider the viral preparation given above. Let there 
be 푡 kinds of antigens to be arranged on 푏 plates, 
each containing 푘 antigens. Each antigen appear 푟 
times (but not necessarily on 푟 different plates) and is 
a neighbour of every other antigen exactly λ times. 

Rees used circular neighbouring block designs, 
where as in the present paper we are dealing with one 
dimensional block designs. Rees, D. H.  (1967) used 
incomplete neighbour design ( 푘 < 푡 ) in his 
experiment. 

 

 
The parameters of the design are  
푡 = 9, 푏 = 9, 푟 = 4, 휆 = 1 and the 9 plates are 

푃 = ( 5,6,4,1),   푃 = ( 6,7,5,2),   푃 = ( 7,8,6,3) 
푃 = ( 8,9,7,4),   푃 = ( 9,1,8,5),   푃 = ( 1,2,9,6)   
푃 = ( 2,3,1,7),   푃 = ( 3,4,2,8),   푃 = ( 4,5,3,9) 

In the present paper we have taken complete 
NNBD ( 푘 < 푣 )with the parametric structures.  

푣 = 3, 푏 = 3푛 ± 1, 푘 =  5, 휆 = 1 
and investigated the optimality of NNBD ( 휌 = 0.1, 
휌 = 0.1, :휌 = 0.2; … 휌 = 0.9,휌 = 0.9 where 
휌 and 휌  are the correlation coefficients) when errors 
according to AR(1), MA(1) , ARMA(1,1) ,AR(2) and 
MA(2) models.  

In the design of experiments, observations are 
assumed to be uncorrelated but correlated 
observations are unavoidable in practice. 
Observations are correlated either because of the 
nature and layout of the plots, some cumulative 
effects through time, pest infections from 
neighbouring plots, or because of some other local 
factors which blocking cannot remove. Experiments 
in agriculture, horticulture and forestry often show 
neighbour effects. Rees, D. H.  (1967) introduced 
neighbour design in serology and defined it as a 
collection of circular blocks in which any two 
distinct treatments appear as neighbours equally 
often. UDDIN, N.,(2008) has constructed      MV– 
Optimality of block design for 3 treatments in               
푏 = 3푛 ±  1 blocks of each size 3 and under the 
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assumption that the blocks behave independently but 
there is a correlation among the observations with the 
same block according to AR(1) Model.  

 

 1.1   Optimal Design 
Optimal designs are experimental designs 

that are generated based on particular optimality 
criterion and are generally optimal only for a specific 
statistical model. 

 

1.2 Optimality Criterion 
 

An optimality criterion is used to study the 
goodness of a design. An optimality criterion is a 
single number that summarizes how good a design is, 
and it is maximized or minimized by an optimal 
design. Some known criteria are G, D, A, E and I – 
optimality. Recently developed optimality criteria are 
Universal, MS and MV –optimality. Here we have 
given the criteria of MV – optimality. 

 

2.  MV – Optimality 
A design 푑∗  Є 퐷  is said to be MV – optimal iff 

Var ∗ T − T
      

 

≤  Var T − T
      

 

Where 퐷 the class of all equireplicate is connected 
designs and d is any other competing design in D. 
 

2. MV – OPTIMALITY OF NEARST 
NEIGHBOUR BLOCK DEISGN 

UDDIN, N., (2008) constructed MV-Optimality 
of block design for 3 treatments in 푏 = 3푛 ±  1 
blocks of each size 3 and under the assumption that 
the blocks behave independently but there is a 
correlation among the observations with the same 
block according to AR(1) model .In this connection 
we have constructed the blocks for AR(1), MA(1), 
ARMA(1,1) ,AR(2) and MA(2) models. 

A block design 푑 is defined as an allocation of 푣 
treatments to 푏푘 experimental units which are 
arranged into 푏 blocks each having 푘 units. 
Example 
 

Let 푑 be a design  
(푣 = 3, 푏 = 3푛 ±   1, 푘 = 5 휆 = 1)   푓표푟 푎푙푙 푛

≥ 1; 
 Block:1 (1,2,3) 
 Block: 2 (2,3,1) 
 Block: 3 (3,1,2) 
Assuming that the observations within the 

same block are correlated according to the second 
order autoregressive process and second order 
moving average process. 

`We assume the following model 
Y =  I + X  + Zβ, Cov(Є) = σ           

(1) 

 

Where, 
 푌  = block major order is the 3푏 × 1 
column vector of observed response obtained from a 
design 푑, 
 퐼 = 3푏 × 1 column vector of ones,휏 =
 3 × 1 vector of treatment effect, 
 푋  =  3푏 × 3 plot-treatment design matrix,  
훽 =  3 × 1vector of fixed block effects, 
 푍 =  퐼 × 퐼  plot-block incident matrix. 

If the errors within a block follow an second 
order Autoregressive model,  

If the errors within a block follow an 
Autoregressive model, AR (1) then 

= I(b)⊗ (1 − ρ )
1 ρ ρ
ρ 1 ρ
ρ ρ 1

for all ρ

≥ 0   (2) 
 

If the errors within a block follow a first 
order Moving Average model then MA (1) is as 
follows 

∑ = I(b)⊗
1 + ρ ρ 0

ρ 1 ρ
0 ρ 1 + ρ

for all ρ  ≥ 0    

(3) 
If the errors within a block follow an Autoregressive 
Moving Average model, ARMA (1, 1) then                                                                                                                                         

 = I(b)⊗   
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If the errors within a block follow an second order 
Autoregressive model, AR(2) then 
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Where,  
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If the error within a block follow a second order 
Moving Average model, MA(2) then 
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The least square information matrix 

1
1'

2
1

2
1'

22
1'

11
1'

1 )( XXXXXXXXCd
 

 
Universally optimal design which includes 

MV-optimal design is often characterized using two 
sufficient conditions of Kiefer’s(1975), 

1. A design 푑∗ such that 퐶∗ is completely 
symmetric. 

2. trace (퐶∗) ≥ trace (퐶∗) for all 푑 in 퐷 . 
Uddin (2008b) gives MV–optimal designs in 
퐷 ±  under model (1) 
퐶∗ = (i, j) , 퐶∗ = element of 퐶∗. 
For any 푑 ∈ 퐷 , the following inequality holds (Lee 
and Jacroux, 1987); 

Var   −     ≥  
C +  C + 2C

C  C −  C
 

Variance of the generalized least squares estimates of 
treatment differences, 

Var (  −    )  =  
C +  C + 2C

C  C −  C
 

Var (  −    )  =  
C

C  C −  C
 

Var (  −    )  =  
C

C  C −  C
 

From Uddin (2008b)  푑∗ ∈ 퐷  to 
denote the design having n copies of the blocks 
(1,2,3); (3,1,2) and (n+1) copies of the block (1,3,2). 

Also   푑∗ ∈ 퐷   to denote the design 
having n copies of the blocks (1,2,3); (3,1,2) and (n-
1) block (1,3,2) 
4.1 MV- Optimality Of Nearest Neighbour 
Balanced Block Designs Using first and Second 
Order Correlated Models 
 
For 퐴푅(1),푀퐴(1) 푎푛푑 퐴푅푀퐴(1,1) 
Case 1: 푏 =  3푛+ 1,푛 =  2; (휈 = 3,푏 =  7,푘 =
 3) 

The variance of the estimates of the 
treatment differences for 퐷∗ & 퐷 is shown in Table 
4.1. 
Case 2: 푏 =  3푛− 1,푛 =  2; (휈 = 3,푏 =  7,푘 =
 3) 

The variance of the estimates of the 
treatment differences for 퐷∗ & 퐷  is shown in Table 
4.2. 
For AR(2) and MA(2),  
Case 1: 푏 =  3푛+ 1,푛 =  2; (휈 = 3,푏 =  7,푘 =
 3) 

The variance of the estimates of the 
treatment differences for 퐷∗ & 퐷 is shown in Table 
4.3. 

Case 2: 푏 =  3푛 − 1,푛 =  2; (휈 = 3,푏 =  7,푘 =
 3) 

The variance of the estimates of the 
treatment differences for 퐷∗ & 퐷  is shown in Table 
4.4. 
 

Conclusion 
 

From Table 4.1 we conclude that  
 the variance of the estimates of the treatment 

differences for 퐷∗ is less than 퐷  for ρ = 0.1, 
0.2, 0.3,…..,0.9 under AR(1), MA(1) and 
ARMA(1,1) model, 

 so we conclude that the design 퐷∗ is MV-
optimal comparing with 퐷 . 
 

From Table 4.2 we conclude that  
 the variance of the estimates of the treatment 

differences for 퐷∗ is less than 퐷  for ρ= 0.1, 
0.2, 0.3,…..,0.9 under AR(1), MA(1) and 
ARMA(1,1) model, 

 so we conclude that the design 퐷∗ is MV-
optimal comparing with 퐷 . 
 

From table 4.3 we conclude that 
 the variance of the estimate of the treatment 

differences for 퐷∗ is less than 퐷  for ρ1, ρ2 = 
(0.1,0.1), (0.2,0.2),…(0.9,0.9) under AR(2) 
and MA(2) model, 

 so we conclude that design 퐷∗ is  MV – 
optimal comparing with 퐷 . 

From table 4.4 we conclude that 
 the variance of the estimate  of the treatment 

differences for 퐷∗ is less than 퐷  for  ρ1, ρ2 
= (0.1,0.1), (0.2,0.2),…(0.9,0.9) under 
AR(2) and MA(2) model, 

 so we conclude that design 퐷∗ is MV – 
optimal comparing with 퐷 . 
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APPENDIX 
     Table 4.1 – AR(1), MA(1) and ARMA(1) when 풃 =  ퟑ풏+ ퟏ 

Error 
model  ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 

AR(1) 
D1

* 0.4814 0.4598 0.4365 0.4128 0.3903 0.3701 0.3537 0.342 0.3353 
D1 1.6246 1.3 1.0228 0.7837 0.6391 0.3073 0.4964 5.0474 2.3377 

 
MA (1) 

D1
* 0.4815 0.4583 0.4286 0.3889 0.3333 0.25 0.1111 0.1667 0.2662 

D1 1.5853 1.159 0.7477 0.3904 1.235 1.0246 2.8646 4.0883 5.4064 
ARMA 

(1,1) 
D1

* 0.4779 0.4685 0.4508 0.3876 0.1982 0.3237 1.8435 7.3934 42.285 
D1 1.2729 0.6664 0.4738 0.5037 2.8564 1.6755 5.0185 20.342 128.973 

 

      Table 4.2 – AR(1), MA(1) and ARMA(1) when 풃 =  ퟑ풏−ퟏ 

 

        Table 4.3 – AR(2), and MA(2) when 풃 =  ퟑ풏+ ퟏ 

 
Error model 

 

 
ρ1=0.1 
ρ2=0.1 

 

ρ1=0.2 
ρ2=0.2 

ρ1=0.3 
ρ2=0.3 

ρ1=0.4 
ρ2=0.4 

ρ1=0.5 
ρ2=0.5 

ρ1=0.6 
ρ =0.6 

ρ1=0.7 
ρ2=0.7 

ρ1=0.8 
ρ2=0.8 

ρ1=0.9 
ρ =0.9 

AR(2) 

 
퐷∗ 

 
0.1080 

 
0.0608 

 
0.0278 

 
0.0076 

 
0.0042 

 
0.0008 

 
0.0090 

 
0.0291 

 
0.0546 

 
퐷

 
0.1170 

 
0.0727 

 
0.0385 

 
0.0142 

 
0.0077 

 
0.0012 

 
0.0127 

 
0.0341 

 
0.0580 

MA(2) 

 
퐷∗ 

 
0.1569 

 
0.1478 

 
0.1401 

 
0.1438 

 
0.1476 

 
0.1544 

 
0.1637 

 
0.1753 

 
0.1893 

 
퐷

 
0.1578 

 
0.1512 

 
0.2615 

 
0.1585 

 
0.1714 

 
0.1890 

 
0.2100 

 
0.2332 

 
0.2584 

 
         Table 4.4 – AR(2), and MA(2) when 풃 =  ퟑ풏− ퟏ 

 
Error model 

 

 
ρ1=0.1 
ρ2=0.1 

 

ρ1=0.2 
ρ2=0.2 

ρ1=0.3 
ρ2=0.3 

ρ1=0.4 
ρ2=0.4 

ρ1=0.5 
ρ2=0.5 

ρ1=0.6 
ρ =0.6 

ρ1=0.7 
ρ2=0.7 

ρ1=0.8 
ρ2=0.8 

ρ1=0.9 
ρ =0.9 

AR(2) D2
 0.1548 0.0896 0.0425 0.0124 0.00655 0.0007 0.0120 0.0398 0.0758 

D2 0.1638 0.1018 0.0539 0.0200 001083 0.0016 0.0178 0.0478 0.0812 

MA(2) D2
 0.2196 0.2062 0.1995 0.1985 0.2023 0.2101 0.2211 0.2354 0.2530 

D2 0.2209 0.2117 0.2123 0.2220 0.3000 0.2646 0.2940 0.3266 0.3618 
 

Error model  ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 

AR(1) D2
* 0.3256 0.3293 0.3279 0.3216 0.3107 0.2962 0.2790 0.2603 0.2411 

D2 0.3985 0.3923 0.3816 0.3731 0.3625 0.3539 0.3500 0.3539 0.3691 

MA(1) D2
* 0.3253 0.3175 0.3253 0.3140 0.2883 0.2305 0.0453 0.3889 0.2247 

D2 0..4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 

ARMA(1,1) D2
* 0.3415 0.3714 0.3941 0.3748 0.0132 0.4624 0.5086 1.8971 2.9781 

D2 0.4162 0.4666 0.5573 0.7007 0.9208 1.2689 1.8699 3.1134 6.9865 


