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Abstract: An exact solution of hydromagnetic, oscillatory flow of
an incompressible, electrically conducting and viscous fluid in
horizontal porous channel embedded with porous medium of time
dependent permeability is obtained in the presence of hall current.
A magnetic field of uniform strength is applied along an axis
perpendicular to the plane of the plate about which the entire
system rotates. The effects of various parameters on the exact
solution so obtained are discussed with the help of graphs and
tables in detail.
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Introduction:

Channels are frequently used in various applications in
designing ventilating and heating of buildings, cooling
electronic components, drying several types of
agriculture products grain and food, and packed bed
thermal storage. Convective flows in channels driven
by temperature differences of boundary walls have
been studied and reported, extensively in literature. On
the other hand flows of fluid through porous medium
are very important particularly in the fields of
agriculture engineering for irrigation processes; in
petroleum technology to study petroleum transport; in
chemical engineering for filtration and purification
processes. Abdussattar [1] and Ahmed [3] have studied
free convection and mass transfer flow of a viscous
fluid through porous medium. In most of these studied
the permeability of the porous medium is assumed to
be constant while the porosity of medium may not
necessarily be constant because porous material
containing the fluid is a non homogenous medium and
there can be numerous in homogeneities present in a
porous medium. Acharya et al [2] have analyzed free
convection and mass transfer in steady flow through
porous medium with constant suction in the presences
of magnetic field. A number of investigation have been
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made by Raptis ef al [9-11] into steady two —
dimensional flow past a vertical walls of constant —
permeability of porous medium. Notable among them
are Attia and Kotb [4], Crammer and Pai[ 5], Ferraro
and Plumpton [6], Shercliff [12] investigated a two-
dimensional MHD flow between two porous parallel,
insulated horizontal plates and the heat transfer through
when the lower plate is kept stationary and upper plate
is moving with uniform velocity. Singh et al [14]
investigated a three —dimensional fluctuating flow
through a porous medium when the permeability
various both in time and space. Singh et al/ [13] have
discussed hydromagnetic free convective and mass
transfer flow of a viscous stratified fluid considering
variation in permeability with direction. Further the
flow of electrically conducting fluids in channel and
pipes under the effect of transverse magnetic field
occur in magnetohydrodynamic (MHD) generators,
accelerators, pump and flow meters. In view of these
and many others important applications of these types
of flows a number of scholars have shown their
interest.

There are other industrial applications of flows of
electrically conducting fluids in the fields of
geothermal system, nuclear reactor, filtration etc,
where the conducting fluid flows through porous
medium which rotates about an axis. In view of the
importance of rotating flows a number of studies
appeared in literatures. Mazumder [8] studied an
oscillatory Ekman boundary layer flow bounded by
horizontal plates one of which oscillate and other is at
rest. Singh and Kumar [15] studied an oscillatory
MHD flow through a porous medium bounded by
rotating porous channel in the presences of hall current
by taking into consideration the constant suction and
permeability.
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In this paper we present an investigation of the effect
of magnetic field, hall current and rotation on a viscous
incompressible and electrically conducting fluid in a
porous horizontal channel filled with porous material
by considering periodic suction and permeability.

Mathematical Analysis:

Consider an unsteady flow of an electrically
conducting, viscous, incompressible fluid through a
porous medium bounded between two insulated
infinite parallel plates’ distances d apart. Choose the
origin at the lower plate lying in x* — y*plane and x*-
axis parallel to the direction of motion of the upper
plate. A strong magnetic field of uniform strength Hy is

H, A

Y*

applied along z*-axis taken perpendicular to the planes
of the plates. The entire system rotates with angular
velocity Q*about z* -axis. The magnetic Reynolds
number is considered to be small so that the induced
magnetic field is neglected. All physical quantities
depend on z*and t* for this problem of fully developed
laminar flow.

The equation of continuity V.V =0  gives on
integration w* = —wg (1+eel®t) at z* where
V= (u",v,w")and solenoidal relation for the
magnetic field V.H=0 gives H; = Hy(constant)
everywhere in the flow field The physical
configuration of the problem is shown in Figure 1.

w'=— wy (1+eAelt)

X*

Figure 1: The physical configuration of the problem

Basic Equation:

The equation of conservation of electric charge V.] = 0 gives ]J,= constant. This constant is zero i.e. J; = 0 at the
plates which are electrically non-conducting. Taking Hall current into account the generalized Ohm’s law is of the
form

]+w}‘;—ze]><H=o(E+ueV><H) (1)

Where V is the velocity vector ,H is the magnetic field ],is the current density, E is the electric field, o is the
electric conductivity, p. is the magnetic permeability, w, is the cyclotron frequency and 7, is the electron
collision time.

For very large magnetic field, the x* and y* components of Ohm’s law (1), which include Hall current, are

Jx + mere]; = G(E; + ueHOV*) (2)

Jy + weTeJx = 0(Ey — HeHou®)  (3)
Since the external electric field arising due to polarization of charges is negligible.
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HenceEy = Ej = 0 Therefore, solving for J; and Jj , we get
s« _ OHeHo(mu +v") x _ OleHo(mv'—u")

Jx = (1+m2) and Jy = (1+m2) “)

Thus within the frame work of these assumptions and making use of equation(4),the flow in the presence of Hall

current by the following equations:

ou* L ou” 1 dp* %k cH%(mv*—u*) vu*
welt oo 1o 2"y + v u)

ot + az* p ox* TV + p(1+m?2) K* (5)

av* L OV* _109p * cH%(mu*+v*) w*

—+w = -2Qu' +—————

at* + az* p oy* Vﬁ p(1+m?2) K* (6)

where p is the fluid density t*is time K* is the permeability of the porous medium. m = .7, , is the Hall
parameter. The permeability is taken in the form K* = K (1 + eBe'®™t).
The boundary conditions of the problem are

uw=v*=0, \

w* = —wo(l + eAei“’*t*), atz* =0 |
and } 7

—U(t)—UO(1+scosmt)v= |

w* = —wy(1 + cAel®"), atz® d )

The flow in presences of Hall current is governed by the following equations

au* jo*t*)0u” _ 19p” y* oH3(mv*—u*) vu*
e Wo(l + cAe ) 0 o %" p(1+m?2) K0(1+€B€i“’*t*) (8)
av* io*t*\0v" _  10dp” 6 ¥ % , GH3(mu*+v*) w*
at* Wo(l +ee ) az* ~ pay* v az*2 p(1+m?2) Ko(1+eBelo 't (9)
Introducing the following non dimensional quantities
z* u* * *d? . ey e wod . C e
n=q t= o't u= o V=% 0= mT is the frequcency of oscillations A = TO is the injection and
0 0

*q2

. . Q'd
suction parameter, M = Hyd ﬁ is the Hartmann number, Q =

. . Ko .
is the rotation parameter ,K = d—g is the

permeability of the porous medium.
Eliminating the modified pressure gradient under the usual boundary layer approximation, equation (8) and (9)
become

ou* o ) 0u _ ()zu* du * GH(Z)(mV*—u*+U*) __v(ut-U")
at* Wo(l +eAe ) oz ¥ oz 2+ dt* + 2Qv p(1+m?2) Ko(1+€Belo™t* (10)
v ot} 9V _ 0%v . " oH3(mu*+v*—mU*) . w*
o~ wo(L+eAel™) = =v——" =207 (W — U") + rmD) caraes (D
Using the non dimensional quantltles the equatlon (10) and (11) become

=_ ityu _ 07u  dU Gl
m M1 + eAel ) = +0) -+29v CireBe (12)

N _ it a" — - v
co M1+ eAe ) ZQ(u mU) - e ses (13)
The corresponding transforrned boundary condltlon becomes

u=v= 0 nn=0
and } (14)

u=Ub)=14e*v=0 n=1

Equation (12) and (13) can be combined into a single equation by using the complex velocity of the form
g=u-+iv (15)
m——x(1+eAelt) 04 aq+mi—f—%—(q—ws (16)
The boundary condltlons in complex notation is given by
q=0 n=20
at } (17)

q=U®) =1+ ge't n=1
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Method of Soluﬁon:
q=qo(n,t) +ee'*qi(n, ) (18)

Substituting (18) into (16) and comparing harmonic and non harmonic part we have

G +2a5) —qo (5+5) = (F+5) (19

a5 () + a3 () — (S+ % +i0) a; = —(Bag(n) + 4Bd, () + Mdo(n) — SBao(m) — (S + 1/K +iw + SB)

(20)
With corresponding transformed boundary condition

The solution of the equation (19) and (20) under the boundary condition (21) are obtained as:

Qo =91 =0 n=20
at (21
Qo =91 =1 n=1
eAz eAlﬂ eAl eAzﬂ
qO(rl) =1- eA2 _eA1 eA2 —eA1 (22)

1
ql - ehs_eA3

[Ayzetn(eAs — efs) + Aj et (efs — efs) 4+ Ajg(efr — efs) + eAn{1 — A 5 (ehr —efs) —

Apg(ef2 —efs) — A15(1 — )} —eAan{1 + Ajs(efs —efr) + Apu(ehr —ef2) + As(eP+ - 1)}]  (23)

Results and Discussion:

Now for the resultant velocities and the shear stresses
of the steady and unsteady flow, we write

() +ivo(n) =qo(m)  (24)

u () +ivi () = qi()e’* (25)

The solution corresponds to the steady part which ug
as the primary and v, as the secondary velocity
components. The amplitude and the phase differences
due to these primary and secondary velocities for the
steady flow are given by

Ro=u2+vZ o= tan-l(Z—Z) (26)

The resultant velocity or amplitude and the phase
differences of the unsteady flow are given by

Ri=Vuf+vi ¢ =tan™'(}) (27)

The resultant velocities R, and R;and the phase
angle ¢y, ¢,for the steady and unsteady part of the
flow are respectively shown graphically in figures 2 to
5. It is observed from figures 2 and 4 that R, and R,
both increase rapidly from zero near the stationary
plate and then approach unity in the form damped
oscillations. Figure 2 and 4 for the steady and unsteady
resultant velocities Ry and R, respectively shown. The
resultant velocities R, decrease slightly with the
increase value of hall parameter m and it increase with
the increase value of suction parameter A, permeability
k and the rotation parameter (), the Hartman
number M. Unsteady resultant velocities R; decrease

with the increase value of frequency of oscillation w
and increase with the increase value of hall parameter
m, suction parameter A, permeability K , the rotation
parameter () and the Hartmann number M.

It is also found from figure 3 and 5 that the phase
differences ¢, increase quickly from zero at the
stationary plate and then approach zero again at the
moving plate in the form of damped oscillations.
Particularly for large values of rotations a phase lag is
also observed for both steady and unsteady phase
angles ¢q and ¢,. The phase differences ¢ increase
with the increasing value of hall parameter m and
permeability K and the phase differences ¢, decreases
with the increasing value of Hartmann number M,
suction parameter A and rotation parameter (). The
phase differences ¢, is increase in the boundary and
decrease at the middle of the channel and then increase
at the boundary of the channel. The phase differences
¢dqincrease with the increasing of hall parameter m,
rotation parameter (), suction parameter A, frequcency
of oscillation w and permeability K in the beginning
and in the middle it decrease and than again a phase lag
occur and than at the boundary it again increase and
with the decreasing value of A and B the phase
differences decrease in the starting and in the middle of
the channel it increase and then it again decrease and
than a phase lag occur and then it again increase at the
boundary of the channel.
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Figure 2: The Resultant velocity Ry due to uy and v.
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Figure 3: Phase angle ¢ due to uy and v,.
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Figure 4: The Resultant velocity Ry due to uq and v,.
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Figure 5: Phase angle ¢ due to uq and v,
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For the steady flow the amplitude and the phase differences of shear stress at the stationary plate ( = 0) can be
obtained as

’ 4T
Tor = [Tox* + TOyz' bor = tan 1(%) (28)

+i _ (6q0) _ AjefzeA1n A efieh2n ( 9
Tox lTOy - an n=0 - eAz _eA1 eAz _eA1 )
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Here Tox and Toy are respectively, the shear stress at the stationary plate due to the primary and the secondary
velocities components. The numerical values for the resultant shear stress Ty, and the phase angled, are listed in

table-1. This table shows that Ty, and phase angle ¢, goes on increasing with the increasing rotations (1 of the
channel.

Tablel: Amplitude t, and the phase an

le o, dueto uy and v,

M [ m a | 2 |K Tor dor

2 |1 10 |02 |02 4.8896 | 0.78540
4 |1 10 (02 [02 5.6420 | 0.55842
2 |3 10 |02 |02 47618 | 0.64822
2 |1 20 |02 |02 6.6017 | 0.69284
2 |1 10 |1 0.2 5.2293 | 0.57062
2 |1 10 |02 |1 47958 | 0.70385

For the unsteady part of the flow the amplitude and the phase differences of the shear stresses at the stationary plate

(M

= () can be obtained as, for t = = as

duq

TlX + ile = (E) 0
T'I:

+i(%) _
on n=0

(&)
om /=

1
NG [eA4—eA3

1+i

{A13 (eAs — efs)A; + ApA, (P —efs) +

(1 —Ags(efr —efs) — Ay, (ef2 —efs) — A5 (1 - eA3)) — A, (1 + Agg(eP —eh) + Ay, (ehr —ef2) +

Aq

’ 1T
Tir = T1x2 + lez' ¢4 = tan 1(%) (31)

se - D)} (30)

From figure 6 it is conclude that t,, decrease slightly with increase value of hall current m and permeability of the
porous medium k, A and it increase with increase of Hartman number M ,rotation parameter (1 ,suction parameter
A and B. From figure 7 it is conclude that the phase differences ¢4, increases with the increasing value of
permeability of the porous medium k, hall parameter m and rotation parameter (). The phase differences ¢4,
decreases with the increasing value of suction parameter A and Hartman number M.

Vit

5

6—// »

5

Figure 6: The amplitude T4, of unsteady shear stress for t =

1.54

w
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Figure 7: Phase angle ¢4, of unsteady shear stress att =
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Concluding Remarks: [7]
The resultant velocities Ry and R, increases with the
increasing value of Hartmann numberM, permeability
parameter k, and rotation parameter(). The resultant [8]
velocities R; decrease with the increasing value of
frequency of oscillation. The resultant velocities Ryand 9]
R;both increases rapidly from zero near the stationary
plate and then approach unity in the form of damped
oscillation.
[10]
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