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Abstract: An exact solution of hydromagnetic, oscillatory flow of 
an incompressible, electrically conducting and viscous fluid in 
horizontal porous channel embedded with porous medium of time 
dependent permeability is obtained in the presence of hall current. 
A magnetic field of uniform strength is applied along an axis 
perpendicular to the plane of the plate about which the entire 
system rotates. The effects of various parameters on the exact 
solution so obtained are discussed with the help of graphs and 
tables in detail. 
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Introduction: 
Channels are frequently used in various applications in 
designing ventilating and heating of buildings, cooling 
electronic components, drying several types of 
agriculture products grain and food, and packed bed 
thermal storage. Convective flows in channels driven 
by temperature differences of boundary walls have 
been studied and reported, extensively in literature. On 
the other hand flows of fluid through porous medium 
are very important particularly in the fields of 
agriculture engineering for irrigation processes; in 
petroleum technology to study petroleum transport; in 
chemical engineering for filtration and purification 
processes. Abdussattar [1] and Ahmed [3] have studied 
free convection and mass transfer flow of a viscous 
fluid through porous medium.  In most of these studied 
the permeability of the porous medium is assumed to 
be constant while the porosity of medium may not 
necessarily be constant because porous material 
containing the fluid is a non homogenous medium and 
there can be numerous   in homogeneities present in a 
porous medium. Acharya et al [2] have analyzed free 
convection and mass transfer in steady flow through 
porous medium with constant suction in the presences 
of magnetic field. A number of investigation have been 

made by Raptis et al [9-11] into steady two –
dimensional flow past a vertical walls of constant –
permeability of porous medium. Notable among them 
are Attia and Kotb [4], Crammer and Pai[ 5], Ferraro 
and Plumpton [6], Shercliff [12] investigated a two-
dimensional MHD flow between two porous parallel, 
insulated horizontal plates and the heat transfer through 
when the lower plate is kept stationary and upper plate 
is moving with uniform velocity. Singh et al [14] 
investigated a three –dimensional fluctuating flow 
through a porous medium when the permeability 
various both in time and space. Singh et al [13] have 
discussed hydromagnetic free convective and mass 
transfer flow of a viscous stratified fluid considering 
variation in permeability with direction. Further the 
flow of electrically conducting fluids in channel and 
pipes under the effect of transverse magnetic field 
occur in magnetohydrodynamic (MHD) generators, 
accelerators, pump and flow meters. In view of these 
and many others important applications of these types 
of flows a number of scholars have shown their 
interest.   
There are other industrial applications of flows of 
electrically conducting fluids in the fields of 
geothermal system, nuclear reactor, filtration etc, 
where the conducting fluid flows through porous 
medium which rotates about an axis. In view of the 
importance of rotating flows a number of studies 
appeared in literatures. Mazumder [8] studied an 
oscillatory Ekman boundary layer flow bounded by 
horizontal plates one of which oscillate and other is at 
rest. Singh and Kumar [15] studied an oscillatory 
MHD flow through a porous medium bounded by 
rotating porous channel in the presences of hall current 
by taking into consideration the constant suction and 
permeability. 
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In this paper we present an investigation of the effect 
of magnetic field, hall current and rotation on a viscous 
incompressible and electrically conducting fluid in a 
porous horizontal channel filled with porous material 
by considering periodic suction and permeability. 
 

Mathematical Analysis: 
Consider an unsteady flow of an electrically 
conducting, viscous, incompressible fluid through a 
porous medium bounded between two insulated 
infinite parallel plates’ distances d apart. Choose the 
origin at the lower plate lying in x∗ − y∗plane and x∗-
axis parallel to the direction of motion of the upper 
plate. A strong magnetic field of uniform strength H  is 

applied along z∗-axis taken perpendicular to the planes 
of the plates. The entire system rotates with angular 
velocity Ω∗about z∗ -axis. The magnetic Reynolds 
number is considered to be small so that the induced 
magnetic field is neglected. All physical quantities 
depend on  z∗and t∗ for this problem of fully developed 
laminar flow. 
The equation of continuity ∇.푉 = 0  gives on 
integration w∗ = −w   1 + εe  at   z∗ where 
V = (u∗, v∗, w∗)and solenoidal relation for the 
magnetic field ∇. H = 0 gives  H∗ = H (constant) 
everywhere in the flow field. The physical 
configuration of the problem is shown in Figure 1. 

 

             
Figure 1:  The physical configuration of the problem 

 
Basic Equation: 
The equation of conservation of electric charge ∇. J = 0  gives  J∗= constant. This constant is zero i.e. J∗ = 0 at the 
plates which are electrically non-conducting. Taking Hall current into account the generalized Ohm’s law is of the 
form 
J + J × H = σ(E + μ V × H)    (1) 
Where V is the velocity vector ,H is the magnetic field J,is the current density, E is the electric field,  σ is the 
electric conductivity, μ  is the magnetic  permeability, 휔  is the cyclotron frequency  and 휏   is the electron 
collision time. 
For very large magnetic field, the x∗  and y∗  components of Ohm’s law (1), which include Hall current, are 
J∗ + ω τ J∗ = σ(E∗ + μ H ν∗)    (2)                                                                          
J∗ + ω τ J∗ = σ E∗ − μ H u∗     (3) 
Since the external electric field arising due to polarization of charges is negligible. 

Porous medium 

H      Z∗ 

Ω 

w ∗ 

X∗ 

Y∗ 

O 

d 

w∗ = −    w   1 + εAe  
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HenceE∗ = E∗ = 0  Therefore, solving for J∗  and   J∗ , we get 
 J∗ = ( ∗ ∗)

( )
 and  J∗ = ( ∗ ∗)

( )
    (4)                                                                          

Thus within the frame work of these assumptions and making  use of equation(4),the flow in the presence of Hall 
current by the following equations: 

∗

∗ + w∗
∗

∗   = −
ρ

 
∗

∗ + ν
∗

∗ + 2Ω∗ν∗ + σ ( ∗ ∗)
ρ( )

− ν ∗

∗  (5) 
∗

∗ + w∗
∗

∗   = −
ρ

 
∗

∗ + ν
∗

∗ − 2Ω∗u∗ + σ ( ∗ ∗)
ρ( )

− ν ∗

∗      (6) 
where 휌 is the fluid density t∗is time K∗ is the permeability of the porous medium.  m = ω τ  , is the Hall 
parameter. The permeability is taken in the form K∗ = K (1 + ϵB푒 ω∗ ∗). 
The boundary conditions of the problem are 

 

u∗ = v∗ = 0,
    w∗ = −w 1 + ϵAe ω∗ ∗ ,       at z∗ = 0

and
u∗ = U∗(t∗) = U (1 + εcosω∗t∗), v∗ = 0

  w∗ = −w 1 + ϵAe ω∗ ∗ ,  at z∗ = d ⎭
⎪
⎬

⎪
⎫

  (7) 

 

The flow in presences of Hall current is governed by the following equations  
∗

∗ − w 1 + εAe ω∗ ∗ ∗

∗ = −
ρ

∗

∗ + 휈
∗

∗ + 2Ω∗ν∗ σ ( ∗ ∗)
ρ( )

  ν ∗

( ϵ ω∗ ∗)
                  (8) 

∗

∗ − w 1 + εAe ω∗ ∗ ∗

∗ = −
ρ

∗

∗ + ν
∗

∗ − 2Ω∗u∗ + σ ( ∗ ∗)
ρ( )

  − ν ∗

( ϵ ω∗ ∗)
          (9) 

Introducing the following non dimensional quantities 
η =

∗

 
      t = ω∗t∗      u =

∗
    v =

∗

 
      ω = ω∗

υ
   is the frequcency of oscillations  λ =

ν
   is the injection and 

suction parameter, M = H d σ
μ
   is the Hartmann number, Ω = Ω∗

ν
 is the rotation parameter ,퐾 =  is the 

permeability of the porous medium. 
Eliminating the modified pressure gradient under the usual boundary layer approximation, equation (8) and (9) 
become 

∗

∗ − w 1 + εAe ω∗ ∗ ∗

∗ = ν
∗

∗ +
∗

∗ + 2Ω∗v∗ + σ ( ∗ ∗ ∗)
ρ( )

− υ( ∗ ∗)
( ϵ ω∗ ∗               (10) 

∗

∗ − w 1 + εA푒 ω∗ ∗ ∗

∗ = ν
∗

∗ − 2Ω∗(u∗ − U∗) + σ ( ∗ ∗ ∗)
ρ( )

  − υ ∗

( ϵ ω∗ ∗)
       (11) 

Using the non dimensional quantities the equation (10) and (11) become 
ω − λ 1 + ϵAe

η
=

η
+ ω + 2Ωv + (mv − u + U) − ( )

( ε )
                        (12) 

ω − λ 1 + ϵAe
η

=
η
− 2Ω(u − U) − (mu + v − mU) −

( ε )
                      (13) 

The corresponding transformed boundary condition becomes          
u = v =   0      η = 0

and
u = U(t) = 1 + εe   v = 0    η = 1  

   (14)  

Equation (12) and (13) can be combined into a single equation by using the complex velocity of the form  
q = u + iv         (15)                                            
ω − λ 1 + ϵAe

η
=

η
+ ω − ( )

( ε )
− (q − U) S          (16)                                                         

The boundary conditions in complex notation is given by  
q = 0                                       η = 0

at
q = U(t) = 1 + εeit                           η = 1

              (17) 

 



Khem Chand and Shavnam Sharma 

Copyright © 2012, Statperson Publications, Iinternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 3 Issue 2  2012 

 

Method of Solution: 
q = q (η, t) + ϵe q (η, t)   (18) 
Substituting (18) into (16) and comparing harmonic and non harmonic part we have 
 

q′′ (η) + λq′ (η) − q + S = + S           (19) 

q′′ (η) + λq′ (η) − S + + iω q = − Bq′′ (η + λBq′ (η) + λAq′ (η) − SBq (η)) − (S +  1/K + iω + SB)                                                          
(20) 
With corresponding transformed boundary condition  
q = q = 0                                           η = 0

at
q = q = 1                                           η = 1

          (21) 

The solution of the equation (19) and (20) under the boundary condition (21) are obtained as: 
q (η) = 1 −

η
+

η
                             (22) 

q = 퐴 e η e − e + A e η e − e + A e − e + e η 1− 퐴 e − e −
퐴 e − e − 퐴 1 − e −e η 1 + 퐴 e − e + 퐴 e − e + A e − 1       (23)                 

 

Results and Discussion: 
Now for the resultant velocities and the shear stresses 
of the steady and unsteady flow, we write 
uퟎ(η) + iv (η) = q (η)      (24) 
u (η) + iv (η) = q (η)e   (25) 
The solution corresponds to the steady part which uퟎ 
as the primary and v  as the secondary velocity 
components. The amplitude and the phase differences 
due to these primary and secondary velocities for the 
steady flow are given by  
R = u + v         ϕ = tan ( )   (26) 
The resultant velocity or amplitude and the phase 
differences of the unsteady flow are given by  
R = u + v             ϕ = tan ( )  (27) 
The resultant velocities R  and R and the phase 
angle ϕ , ϕ for the steady and unsteady part of the 
flow are respectively shown graphically in figures 2 to 
5.  It is observed from figures 2 and 4 that R  and R  
both increase rapidly from zero near the stationary 
plate and then approach unity in the form damped 
oscillations. Figure 2 and 4 for the steady and unsteady 
resultant velocities  R  and R  respectively shown. The 
resultant velocities  R  decrease slightly with the 
increase value of hall parameter m and it increase with 
the increase value of suction parameter λ, permeability 
k and the rotation parameter Ω, the Hartman 
number M. Unsteady resultant velocities R  decrease 

with the increase value of frequency of oscillation ω 
and increase with the increase value of hall parameter 
m, suction parameter 휆, permeability K , the rotation 
parameter Ω and the Hartmann number M. 
It is also found from figure 3 and 5 that the phase 
differences  ϕ  increase quickly from zero at the 
stationary plate and then approach zero again at the 
moving plate in the form of damped oscillations. 
Particularly for large values of rotations a phase lag is 
also observed for both steady and unsteady phase 
angles  ϕ  and  ϕ . The phase differences ϕ  increase 
with the increasing value of hall parameter m and 
permeability K and the phase differences  ϕ  decreases 
with the increasing value of Hartmann number M, 
suction parameter λ and rotation parameter Ω. The 
phase differences ϕ  is increase in the boundary and 
decrease at the middle of the channel and then increase 
at the boundary of the channel. The phase differences 
 ϕ increase with the increasing of hall parameter m, 
rotation parameter Ω, suction parameter λ, frequcency 
of oscillation ω and permeability K in the beginning 
and in the middle it decrease and than again a phase lag 
occur and than at the boundary it again increase and 
with the decreasing value of A and B the phase 
differences decrease in the starting and in the middle of 
the channel it increase and then it again decrease and 
than a phase lag occur and then it again increase at the 
boundary of the channel.  
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Figure 2: The Resultant velocity 푹ퟎ due to 풖ퟎ and 풗ퟎ. 

 
 Figure 3: Phase angle 흓ퟎ due to 풖ퟎ and 풗ퟎ. 

                          
Figure 4: The Resultant velocity 푹ퟏ due to 풖ퟏ and 풗ퟏ. 

 
Figure 5: Phase angle 흓ퟏ due to 풖ퟏ and 풗ퟏ 
 

For the steady flow the amplitude and the phase differences of shear stress at the stationary plate (η = 0) can be 
obtained as 

τ = τ + τ , ϕ = tan ( )                  (28) 

τ + 푖τ = = −
η

+
η
  (29)                                          
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Here τ  and τ  are respectively, the shear stress at the stationary plate due to the primary and the secondary 
velocities components. The numerical values for the resultant shear stress τ  and the phase angleϕ  are listed in 
table-1. This table shows that τ  and phase angle ϕ  goes on increasing with the increasing rotations Ω of the 
channel.  

Table1: Amplitude 흉ퟎ풓 and the phase angle 흓ퟎ풓 due to  풖ퟎ and 풗ퟎ 
M m Ω λ K 휏  ϕ  

2 1 10 0.2 0.2 4.8896 0.78540 
4 1 10 0.2 0.2 5.6420 0.55842 
2 3 10 0.2 0.2 4.7618 0.64822 
2 1 20 0.2 0.2 6.6017 0.69284 
2 1 10 1 0.2 5.2293 0.57062 
2 1 10 0.2 1 4.7958 0.70385 

 

For the unsteady part of the flow the amplitude and the phase differences of the shear stresses at the stationary plate 
(η = 0) can be obtained as, for  t =  as 

    휏 + 푖휏 = + i = =
√

퐴 e − e A + A A e − e +

1− 퐴 e − e − 퐴 e − e − 퐴 1− e − A 1 + 퐴 e − e + 퐴 e − e +

A e − 1                        (30)                

 τ = τ + τ , ϕ = tan ( )        (31) 

From figure 6 it is conclude that τ  decrease slightly with increase value of hall current m and permeability of the 
porous medium k, A and it increase with increase of   Hartman number M ,rotation parameter Ω ,suction parameter 
λ and B. From figure 7 it is conclude that the phase differences ϕ  increases with the increasing value of 
permeability of the porous medium k,  hall parameter m and rotation parameter Ω. The phase differences ϕ  
decreases with the increasing value of suction parameter λ and Hartman number M. 

 
Figure 6: The amplitude 흉ퟏ풓 of unsteady shear stress for  풕 = 흅

ퟒ
. 
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Figure 7: Phase angle  흓ퟏ풓 of unsteady shear stress at 풕 = 흅
ퟒ
. 

 

Concluding Remarks: 
The resultant velocities R  and R  increases with the 
increasing value of Hartmann numberM, permeability 
parameter k, and rotation parameterΩ. The resultant 
velocities R  decrease with the increasing value of 
frequency of oscillation. The resultant velocities R and 
R both increases rapidly from zero near the stationary 
plate and then approach unity in the form of damped 
oscillation. 
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Appendix 

A  =  ,  A =  , 
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, S = 2Ωi + (1 + im), A = A + A + A ,    A = A + A + A , A = A + A  

 


