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Abstract: A new form of half- Cauchy distribution using 
Marshall-Olkin transformation is introduced. The properties of 
the new distribution such as density, cumulative distribution 
function, quantiles, measure of skewness and distribution of the 
extremes are obtained. Time series models with half-Cauchy 
distribution as stationary marginal distributions are not 
developed so far.  We develop   first order autoregressive process 
with the new distribution as stationary marginal distribution and 
the properties of the process are studied. Application of the 
distribution in various fields is also discussed. 
Keywords:  Autoregressive Process, Geometric Extreme Stable, 
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1. Introduction: 
 

The  half  Cauchy (HC) distribution is  derived  from  
the  standard  Cauchy distribution  by  folding  the  
curve  on  the  origin  so  that  only  positive  values can  
be  observed.  A continuous random variable X is said 
to have the half Cauchy distribution if its survival 
function is given by  
 

퐹(x)=1 −   tan 푥, 푥 > 0  (1.1) 

As  a  heavy  tailed  distribution,  the  HC  distribution  
has  been  used  as  an alternative  to  exponential  
distribution  to  model  dispersal  distances  (Shaw  
(1995)) as the former predicts more frequent long 
distance dispersed events than  the  latter.   Paradis  
et.al  (2002)  used  the  HC  distribution  to  model 
ringing data on two species of tits (Parus caeruleus and 
Parus major) in  
Britain and Ireland.  
 

From (1.1), we get the probability density function (pdf 
)  f (x) and cumulative distribution function (cdf ) F(x) 
of the HC distribution as   
 

푓(푥) =        푥 > 0  (1.2) 
 

and  
 

퐹(푥) = tan 푥   푥 > 0  (1.3) 
 

respectively, see Johnson et al.  (2004). The Laplace 
transform of (1.2) is  
 

∅(푡) = ∫ 푒 푓(푥)푑푥 =
− sin(푡) 푐푖(푡)-cos(푡) si(t) 

푡 ≥ 0  (1.4) 

 

 
where 

 

푠푖(푡) = −
sin ξ
ξ

푑ξ, 푐푖(푡) =
cos ξ
ξ

푑ξ, 푡 ≥ 0 
 

Remark 1.1.  For the HC distribution the moments do 
not exist.  
Remark 1.2.  The HC distribution is infinitely divisible 
(Bondesson (1987)) and self decomposable (Diedhiou 
(1998)).  
 

Relationship with other distributions: 
 

1. Let Y be a folded t variable with pdf given by 
 

푓(푦)  =
2Γ( )

( )√νπ
 1 +

푦
ν

( )

, 
푦 > 0,
ν ∈ 푁, 

(1.5) 

 

When ν = 1 , (1.5)   reduces to 

푓(푦)  =
2
휋

 
1

1 + 푦
,  푦 > 0 

 

Thus, HC distribution coincides with the folded t 
distribution with 휈 = 1 degree of freedom. 
 

2.  Let Z1 and Z2 be two independent non negative, 
real valued rvs having the folded standard normal 
distribution.   Then  푌 =   has the HC distribution. 
 

3.  It is known that the folded standard normal 
distribution coincides with the chi-square distribution 
with one degree of freedom.  Therefore, if Z1 and Z2 
are two independent chi-square variables with 
parameter 1, then 푌 =   has the HC distribution. 
 

According to Gaver and Lewis (1980), a self 
decomposable distribution can be the marginal 
distribution of a stationary   first order autoregressive 
(AR(1)) process of the form  
 

푋 = 휌푋 + 휀 , 
 

(1.6) 
Where {휀 } is a sequence of independent identically 
distributed (i.i.d) random variables, independent of 
Xn.  The usual procedure to develop AR(1) models 
of  the  form  (1.6)  for  self  decomposable  
distributions  is  by  considering  the generating 
functions.  Here since the Laplace transform of HC 
distribution is not in closed form, we use the 
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minification model introduced by Pillai et al. (1995) 
to develop first order autoregressive process with HC 
distribution as stationary marginal distribution.  
 

Adding  parameters  to  an  existing  distribution  
will  give  extended  forms of  the  distribution  and  
these  distributions  are  more  flexible  to  model  
real data.  Marshall and Olkin (1997) introduced a 
general method of adding a parameter to a family of 
distributions. According to them, if F(x) denote the 
cdf of a continuous rv X , then  
 

퐺(푥) =
퐹(푥)

훼 + (1− 훼)퐹(푥) , 
 

훼 > 0 (1.7) 

is also  a  proper  cdf.  In  this  paper,  we  introduce  
a  new  family  of  HC  distribution by applying 
transformation (1.7) to the HC distribution and using  
this new class, we develop an autoregressive 
maximum process with the new form  of  HC  
distribution  as  stationary  marginal  distribution  
and  study  its  
properties.  
 

The paper is organized as follows:  The generalized 
half Cauchy distribution is introduced and some of 
its properties are given in section 2.  Section 3  
deals with the estimation of the parameter.  First 
order autoregressive process with the new 
distribution as stationary marginal distribution is 
introduced  
and its properties are studied in section 4.  Simulated 
sample path behavior of the process and 
autoregressive process of order k are given in this 
section.  
Section 5 gives the concluding remarks and the 
possible area of application of the new model. 
 

2. Generalized Half-Cauchy Distribution: 
 

A generalization of the HC distribution, named Beta 
Half-Cauchy distribution obtained through beta 
transformation was introduced by Cordeiro and 
Lemonte (2011).  Here,  we  introduce  another  
generalization  of  the  HC  distribution, which  has  
simple  closed  form  expression  for  the  cdf,  using  
the Marshall-Olkin transformation.  By substituting 
the cdf (1.3) in transformation (1.7), we get a new 
family of HC distribution with cdf  
 

퐺(푥) =
2 tan 푥

휋훼 + 2(1− 훼) tan 푥
  , 

 

훼 > 0 (2.1) 

When  훼 = 1, (2.1) reduces to  (1.3).  The pdf is 
obtained as 

푔(푥) =
2휋훼

(1 + 푥 )(휋훼 + 2(1− 훼) tan 푥)
 , 

 훼 > 0,푥 > 0 (2.2) 
 

and the survival function is 

 

퐺(푥) =
∝ (휋 − 2 tan 푥)

휋훼 + 2(1− 훼) tan 푥
  , 

 

 (2.3) 

We  call  the  distribution  with  cdf  given  by  (2.1)  
as  the  Generalized  half-Cauchy distribution with 
parameter 훼, denoted as GHC(훼). 
 

 
Fig.1 pdf of GHC(휶 ) for 휶  = 2, 1:5, 1, 0.8, 0.2, 0.5 

 

The hazard rate function is  
ℎ (푥) =

2휋
(1 + 푥 )(휋− 2 tan 푥)(휋 ∝ +2(1−∝) tan 푥)

 , 

(2.3) 

 
 

Fig.2 hazard rate function of GHC(∝) for ∝ = 2, 1,5, 1, 0.8, 
0.5, 0.3, 0.2 

 

The shapes of the density function for various values 
of the parameter are given in   figure 1.  Figure 2 
shows the shapes of the hazard rate function for  
selected  values  of ∝. The  new  model  is  very  
simple  and  can  be  easily simulated as follows. If 
U is an Uniform (0,1) random variable, then 푋 =
푡푎푛  ∝

( ∝)    has GHC(∝) distribution. 
 

Remark  2.1.  The  mode  of  the  distribution  is  the  
solution  of  the  equation  
 

2(1−∝) + 푥[휋훼 + 2(1− 훼) tan 푥] = 0 
Remark 2.2.  For the GHC(∝ ) distribution the 
moments do not exist. (Theorem 1 Rubio and Steel 
(2012)) . 
 

The qth  quantile of the GHC(∝) distribution  is given 
by  
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푥 = 퐹 (푞) = 푡푎푛 ∝
( ( ∝))

 , where 0≤ 푞 ≤ 1  
 

and 퐹 (.) is the inverse distribution function. For  
푞 =  ,  푎푛푑 ;  the median and quartiles are 
respectively 
 

푀푒푑푖푎푛(푋) = 푡푎푛
휋훼

2(1 + 훼)
 

 

푄 = 푡푎푛
휋훼

2(3 + 훼)
 

 

푄 = 푡푎푛
3휋훼

2(1 + 3훼)
 , 

 

The quartile measure of skewness is obtained as 
 

훾(훼) =
푡푎푛 3휋훼

2(1 + 3훼) + 푡푎푛 휋훼
2(3 + 훼) − 2푡푎푛 휋훼

2(1 + 훼)

푡푎푛 3휋훼
2(1 + 3훼) − 푡푎푛 휋훼

2(3 + 훼)
 

 

Definition  2.3  (Marshall  and  Olkin  (1997)).   
Let   {푋 , 푖 ≥ 1}   be a sequence of independent 
identically distributed random variables with common 
cdf  F (x)  and  let  N  be  a  geometric  random  
variable  with  parameter  p  such that P (N  = n) = 
p(1-p) n-1 , n=1,2,….; 0<p<1, which is independent of 
Xi  for all 푖 ≥ 1. Also, let U=min(X1,X2,,,,, XN) and V = 
max(X1,X2,,,,, XN).  If 퐹휖ℑ implies  that  the  distribution  
of  U (V )  is  in ℑ ,  then  ℑ  is said  to  be  geometric-
minimum  stable  (geometric-maximum  stable).  If  ℑ  
is both  geometric-minimum  and  geometric-maximum  
stable,  then ℑ  is  said  to be geometric-extreme stable. 
 

Theorem  2.4.  Let  {푋 , 푖 ≥ 1} and  N  are defined as  
in  definition  (2.3). Then, 
(i)  min(X1,X2,,,,, XN) has GHC(∝ 푝) distribution, 
(ii)  max(X1,X2,,,,, XN) has GHC ∝   distribution. 
Proof.  Let  U = min(X1,X2, …. XN) and 
V=max(X1,X2,XN). The survival function of U  is given 
by 
P (U ≥  x) =  P(min(X1,X2,,,,, XN)   ≥ x) 
                  =  ∑ 푝(1 − 푝)  (퐹 (푥))  
                  = ∝ ( )

( )  
 

That is, GHC(∝) distribution is geometric minimum 
stable.  Similarly, the cdf of V  is given by 
P (V ≤  x) =  P(max(X1,X2,,,,, XN)  ≤ x) 
 

                  =  ∑ 푝(1 − 푝)  퐹 (푥)  
 

                  = ( )  , 
 

which shows that the distribution is geometric 
maximum stable. 
 

Remark 2.5. It follows from definition (2.3) and 
theorem (2.4) that GHC(∝) distribution is geometric 
extreme stable. 

 

3. Estimation of Parameters: 

 

The log-likelihood of the sample is given by 
Log L =  nlog(2휋) + 푛푙표푔훼 − ∑ log 1 + 푥 − 
2∑ log(휋훼 + 2(1 −훼) tan 푥 ) 
 

The normal equation is 
 

2훼
휋 − 2 tan 푥

휋훼 + 2(1 − 훼) tan 푥 = 푛 

 

3.1 

The maximum likelihood estimate of  훼   is the solution 
of equation (3.1).  It can be solved numerically by using 
the function nlm in the statistical software R. 
 

4. First order AR process with GHC(∝) as 
marginal distribution: 

 

In this section, we develop stationary autoregressive 
maximum process with GHC(∝) marginal distribution.  
The autoregressive sequence {Xn} of 
GHC(∝)distributed random variables are related in the 
following manner:  

 

푋 =
휀 , 푤.푝  푝,

max(푋 , 휀 ) ,푤.푝.  1 − 푝 (4.1) 
 

where  0  <  p  <  1  and  {휀 }  is  a  sequence  of  i.i.d  
HC  random  variables, independent of {Xn}.  

 

Theorem 4.1.  {Xn} as defined by (4.1) is a stationary 
AR(1) process with GHC (1/p)  marginal  distribution  
if  and  only  if  {휖 }  is  distributed  as  HC, provided             
 푋  퐺퐻퐶(1/p). 
 

Proof. From (4.1), 
 

퐹 (푥) = 푝퐹 (푥) + (1 − 푝)퐹 (푥)퐹 (푥) 

= 
( )

( ) ( ) , 
 

assuming stationarity.  Let 휀   퐻퐶  with cdf (1.3). 
Then, 
퐹 (푥) =   
 

Conversely, Let 푋  
  퐺퐻퐶(1/p) 

 

퐹 (푥) = 
( )

( ) ( )  
 

    =  tan 푥 
 

To prove stationarity, let   푋   퐺퐻퐶(1/p) and X1 is 
as defined by (4.1). 
 

퐹 (푥) = [푝+ (1− 푝)퐹 (푥)]퐹 (푥) 
 

=
2 tan 푥

+ 1 − 1
푝 2tan 푥

 

 

Now, let 푋   퐺퐻퐶(1/p) and Xn   is as defined by 
(4.1). Following similar steps, it can be shown that 
    푋   퐺퐻퐶(1/p).  Hence the proof. 
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Remark 4.2.  Even if X0 is distributed arbitrary with 
cdf 퐹 , the process is asymptotically stationary with 
퐺퐻퐶(1/p) marginal distribution. 
 

Proof.  Let X0 is distributed arbitrary with cdf 퐹 and 
휀   퐻퐶.  Using the autoregressive structure (4.1), the 
cdf of Xn can be expressed as 
 
퐹 (푥) = 푝퐹 (푥) (1− 푝) 퐹 (푥) 

+(1− 푝) 퐹 (푥)퐹 (푥) 
 

→ 
( )

( ) ( ) , 
 

as n → ∞ and since 0 < p < 1.  
 

Now, if 휀    H퐶, the cdf of 푋  is obtained as  
 

lim
→

퐹 (푥) 
=

2 tan 푥

+ 1 − 1
푝 2tan 푥

 

 

Hence Xn converges in distribution to GH C (1/p) as               
n → ∞.  
 

Now  we  consider  the  joint  distribution  of  the  
random  variables  Xn  and Xn-1 . We have  
 

퐹 ,
(푥,푦) = 푃(푋 ≤ 푥,푋 ≤ 푦) 

 
= p푃(푋 ≤ 푥)푃(휀 ≤ 푦) 
+(1-p ) 푃(푋 ≤ min(푥,푦))푃(휀 ≤
푦) 
 
= 퐹 (푦)[푝퐹 (x) + (1-
p) 퐹 (min(푥,푦))] 
=

( ) ( ) ,   
( )[ ( )  ( ) ( ),   

 
 

=
  

[ ( ) ]
 ,푥 < 푦

  ( [ ( ) ]
[ ( ) ][ ( ) ]  −

 

 
8푝(1− 푝) tan 푥 (tan 푦)

휋[휋 − 2(1− 푝) tan 푥][휋 − 2(1− 푝) tan 푦]
> 푦 
 

The joint distribution of the random variables Xn and 
Xn-1 is not absolutely continuous since 
 

푃(푋 = 푋 ) = (1− 푝)푃(휀 ≤ 푋 ) 
=4p(1 −푝)∫  

( ) ( ( ) )
 

 
=      휖 (0,1) 
 

On the other hand, we have that 
 

푃(푋
< 푋 ) 

= 푝푃(휀 < 푋 ) 
 

= 4 푝 ∫  
( ) ( ( ) )

   
 

=   ( )
( )  

 휖 (0,1/2) 
 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 

fig. 3 Simulated Sample path of the Process GHC(∝) 
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The simulated sample path for the GHC(∝) process 
for   ∝ = 0.1, 0.3, 0.6, 0.9 is given in figure 3, (a) – 
(d).  The inferences can be verified by referring to 
the expression for P (Xn < Xn-1).  
 

The introduced maximum autoregressive process of 
the   first order can be easily generalized to high-
order process.  Namely, we can introduce maximum 
autoregressive process of order k as following  
 

 
 
 
푋 = 
 

 
 
{ 

휀  , w.p.  p0 
max(푋 , 휀 ) ,  w.p.  p1 
max(푋 , 휀 ) ,  w.p.  p2 
: : 
: : 
max(푋 , 휀 ) ,  w.p.  pk 

 

Where 0 ≤ pi < 1 for i = 0,1,….,k and ∑  푝 = 1−
푝 .  Then, {Xn} is a stationary process with GHC 
(1/p0) marginal distribution if and only if {휀 } is 
distributed as HC.  We have that  
 

푃(푋
≤ 푥) 

= 푝 푃(휀 ≤
푥)+∑ 푝 푃(max (푋 , 휀 ) ≤ 푥) 
 

= 푝 퐹 (푥) + ∑ 푝  퐹 (푥) 퐹 (푥) 
 

On assuming stationarity, we get 
 

퐹 (푥) 
=

푝 퐹 (푥)
1− (1− 푝 )퐹 (푥)

=
2푝 tan 푥

휋 + 2(푝 − 휋) tan 푥
 

 

Thus, 푋   퐺퐻퐶 (1/푝 ). This shows that the first 
order model can be easily extended to the kth order 
case and all results derived above are valid here also.  
 

5. Conclusion 
 

In this paper, we use the transformation introduced 
by Marshall and Olkin (1997)  to  define  a  new  
model  called  Generalized  half-Cauchy  
distribution, which  extends  the  half-Cauchy  
distribution.   We  study  some  properties  of the 

model and discuss the maximum likelihood 
estimation of its parameters. The  proposed  model  is  
more   flexible  than  the  half-Cauchy  distribution  
and can be used effectively for modeling lifetime 
data. First order autoregressive process with half-
Cauchy distribution as stationary marginal 
distribution is developed for the first time and the 
properties of the process are studied.  
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