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Introduction 
  Curved exponential families of distributions play 
an important role in theory of statistics. In case of 
inference, for curved exponential family we can not find 
test statistic as good, powerful and efficient as the 
exponential family. But there is a ray of hope due to 
Bradly Efron. He has shown in his paper, “Defining the 
Curvature of a Statistical Problem (with Application to 
Second Order Efficiency)” [1] that families with small 
curvature enjoy the good statistical properties of 
exponential families.  
  In curved exponential family, variance of 
maximum likelihood estimator (MLE) exceeds the 
Cramer-Rao lower bound. For curved exponential family 
MLE is not the sufficient statistic in general. Nonetheless, 
with small curvature, curved exponential family enjoys 
good statistical properties. Firstly it is to be found that the 
values of the involved parameters of the distributions, for 
which, curvature have small values. Hence, after finding 
such values, it can be suggested that for the values of the 
parameter, the test statistic of certain hypothesis is 
equivalent to that of the corresponding exponential 
family. In this case it is found that some inference 
procedures are available fragmentally for continuous 
distributions. But for discrete cases we don’t find any 
procedure. Motivated by my (Sanchayita Sadhu) project 
work (submitted during the period of my post graduate 
study), this paper wants to find some techniques of 
inference in binomial distribution – a discrete 
distribution. 
 

Curved Exponential Family:- 
  Let X = (X1, X2,…, Xd) have a distribution P,  
 Θ  Rq. Suppose P has a density (pmf)  of the form 
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where k > q. Then the family {P,   Θ} is called curved 
exponential family. 
 

Some Examples of Curved Exponential Family: 
1. A set of independently and identically distributed 

random variables which follow N (θ, θ2), θ is the 

unknown parameter involved in the distribution 
[4]. 

2. A random variable, say, X that follows gamma 
(, 1/),  is the unknown parameter involved in 
the distribution. 

3. X and Y, say, are two random variables such that 
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           where p is the unknown parameter involved in 
both the distributions [4]. 
 

4. Let a random variable, say, X = (X1,X2) has a 
Bivariate normal distribution with zero mean, 
standard deviation equal to 1 and correlation 
parameter ,  is the involved unknown 
parameter [4]. 

5. Suppose Zi = zi, i = 1,2,…,n. Xi are independent  
Poi(λzi) variables and Z1,Z2,…,Zn have some 
joint p.m.f p(z1,z2,…,zn). It is implicitly assumed 
that each Zi > 0 with probability 1. Then the joint 
p.m.f of (X1,X2,…,Xn,Z1,Z2,…,Zn) is  
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             N0 = set of non-negative integer, N1 = set of 
positive integers [4]. 

6. Equicorrelation Multivariate Normal distribution: 
suppose (X1,X2,…,Xn) are jointly multivariate 
normal with general mean i, variances all 1 and 
a common pair wise correlation . This is an 
example of curved exponential family [4]. 

Applications of curved exponential family:- 
First of all, some real life data, in which the 

random variables belong to curved exponential family, is 
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discussed. The analysis, done in this paper, hope to be 
applied to the data to draw certain inference. 
  Some practical examples of curved exponential 
family are discussed here. 
 

Mixed Ancestral Graph (MAG):- 
  The family of distributions represented by a 
linear MAG M over a set of k variables is a locally 
parameterized curved exponential family of dimension 
equal to k(k+1)/2 minus the number of pairs of variables 
in M that are not adjacent to each other. (Theorem 4; 
Parameterizing and Scoring Mixed Ancestral Graphs by 
Thomas Richdson & Peter Spirtes [2]).    
 

Lazega’s Lawyer dataset:- 
Lazega’s Lawyer dataset [5] is another example 

where the random variables of the dataset are from curved 
family. 
 

Use in Social Networking:- 
David. R. Hunter, in his paper, “Curved 

Exponential Family Models for Social Networks”, [3] has 
stated on the usefulness of curved exponential family 
models on generalization of exponential random graph 
model (ERGMs). 
 

 Concept of Statistical Curvature:- 
  The concept of mathematical curvature extends 
to the curved lines in Euclidian k-space, Ek, say, £= {, 
Θ}, where Θ is the interval of real line. For each ,  
is a vector in Ek whose component wise derivatives with 
respect to  is denoted by 
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  These derivatives are assumed to exist 
continuously in neighborhood of a value of  where it is 
wished to define the curvature. Let us also suppose that a 
kk symmetric non-negative definite matrix  is defined 
continuously in .  
  Let M be a 22 matrix, with entries denoted 
                                 ν20(), ν11(), ν02(),  
 

defined by  
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Then γ is “the curvature of £ at  with respect to inner 
product”. 
 

Statistical Curvature:- 
γ (given in (2)), the statistical curvature of ₣ at , is the 
geometric curvature of £={ :   Θ } at  with respect 

to the covariance inner product  as defined in (1) and 
(2). 
   Here ₣ will stand for the family of densities 
{f(x):   Θ}, our curved exponential family. 
 

Procedure for Finding Curvature of Various 
Distributions from Curved Exponential Family:- 
  First the pmf/pdf of the random variables is 
arranged as the known form of curved exponential family. 
 i.e. of the form    
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Then finding the values of ηi (θ)’s and Ti (x)’s the matrix 
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computed. If there are some negative values in the above 
result, then the absolute values are taken. Finally 
  2/13

20 )(/ M i.e. the statistical curvature for various 
values of θ is calculated. 
  Using this method the values of the statistical 
curvature corresponding to the possible values of the 
involved parameters are found. From these values it can 
be easily concluded that for which values of the involved 
parameters the curvature has small values and it can be 
said that for these values of the parameters, the given 
curved exponential family enjoys the good statistical 
properties of exponential families.  
 

The Area of Work:-  
The details work of analysis to find these values 

of involved parameters for which the curvature has small 
values is done on the following distributions which are 
some particular examples of curved exponential family.  
The examples are given below: 

1. A set of independently and identically distributed 
random variables which follow N (θ, θ2), θ is the 
unknown parameter involved in the distribution. 

2. A random variable, say, X that follows 
gamma(,1/),  is the unknown parameter 
involved in the distribution. 

3. X and Y, say, are two random variables such that 
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      where p is the unknown parameter involved in 
both the distributions. 
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4. Let a random variable, say, X = (X1,X2) has a 
Bivariate normal distribution with zero mean, 
standard deviation equal to 1 and correlation 
parameter ,  is the involved unknown 
parameter. 

 

Curvature of some curved distributions:- 
1. On Normal Distribution:- 

 

Let X1,X2,…,Xn are iid N(θ,θ2). 
Here  
f(x|θ) =  ))
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       =k(θ)exp(η1 (θ) T1 + η2 (θ) T2 ) h(x) 
Here, 
η1(θ)=1/θ2 , 2=1/θ. 
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It is known that the moment generating function of X will 
be 

MX(t)= exp(θt+
2
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E(X4)= 10θ4 
V(Xi

2)=E(Xi
4)-[E(xi

2)]2 = 6θ4 
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Hence the dispersion matrix (variance-covariance matrix) 
is given by 
θ = 
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So, for all possible values of θ, the value of the curvature 
is very small. 
 

2. On Gamma Distribution:- 
  Let X be a random variable which follows 
Gamma(α,1/α). 
 i.e X ~ G(α,1/α). 
  Then the pdf of X is given by  
 

f(x|θ)= 
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 = k(θ) 
    )(2211 xhe TT  

 (2.2) 
 

Here η1(θ) = α-1 and η2(θ) = 1/α  
T1= log x   and     T2= x  
Now to find the required variances and covariance a 
simulation procedure is to be followed. After computing 
the required expressions, using an R program the values 
of curvature are found. 

The curvature of the mentioned Gamma 
distribution is given in the following figure: 

 
           Figure1 
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So, from Figure1, it may be concluded that for  = 0 to 
46 the value of the curvature is small.  
 

3. On Binomial Distribution:- 
Let X follows Binomial(n,p) and Y follows 

Binomial(m,p2) 
i.e 
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T1(x,y) = x    ,   T2(x,y) = y. 
 

With this information an R program is used to find the 
values of the curvature. 

 

The curvature of the mentioned distribution is given in 
the following figure: 
 

             Figure 2 
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It is known that there is test statistic for single binomial 
distribution. Here is the joint distribution of two 
independent random variables which follow Bin(n,p)  and 
Bin(m,p2) respectively. So, for the values of p for which 
the value of the curvature is small, any test statistic which 
is valid in corresponding exponential family can not be 
referred. 
 

Inference of the Above Binomial Distributions: 
Test Procedure: 

To overcome this problem this paper would like 
to find out a test procedure to draw an inference about the 
null hypothesis. Here is the likelihood ratio test. 

From Figure 2 it is seen that for p=0.6 to 0.85 the 
value of the curvature is small.  
This paper wants to test  
                     H0 : p = 0.8   vs.  H1 : p ≠ 0.8 
To find LRT firstly the maximum likelihood estimator of 
p is found.  
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Using R the values of λ will be found. 
Let us consider the following table, from which a decision can be made: 

 

             Table 3 
Ob.No. (x,y) λ Sort(λ)  q Corresponding

(x,y) 
Probability sum  s 

1 (0,0) 460.0262373 0.2450758 (5,3) 0.08589935 
2 (0,1) 171.7394474 0.6127021 (4,3) 0.10737418 
3 (0,2) 64.1146861 0.6564672 (5,2) 0.15569256 
4 (0,3) 23.9356364 1.5317867 (3,3) 0.16106127 
5 (1,0) 184.0067301 1.6412016 (4,2) 0.17314087 
6 (1,1) 68.6943735 1.7584320 (5,1) 0.20031996 
7 (1,2) 25.6453497 3.8295451 (2,3) 0.20166214 
8 (1,3) 9.5740587 4.1030881 (3,2) 0.20468204 
9 (2,0) 73.6011862 4.3961701 (4,1) 0.21147681 
10 (2,1) 27.4771872 4.7101868 (5,0) 0.22676505 
11 (2,2) 10.2579300 9.5740587 (1,3) 0.22710059 
12 (2,3) 3.8295451 10.2579300 (2,2) 0.22785556 
13 (3,0) 29.4398721 10.9906500 (3,1) 0.22955426 
14 (3,1) 10.9906500 11.7757079 (4,0) 0.23337632 
15 (3,2) 4.1030881 23.9356364 (0,3) 0.23346020 
16 (3,3) 1.5317867 25.6453497 (1,2) 0.23364895 
17 (4,0) 11.7757079 27.4771872 (2,1) 0.23407362 
18 (4,1) 4.3961701 29.4398721 (3,0) 0.23502914 
19 (4,2) 1.6412016 64.1146861 (0,2) 0.23507632 
20 (4,3) 0.6127021 68.6943735 (1,1) 0.23518249 
21 (5,0) 4.7101868 73.6011862 (2,0) 0.23542137 
22 (5,1) 1.7584320 171.7394474 (0,1) 0.23544791 
23 (5,2) 0.6564672 184.0067301 (1,0) 0.23550763 
24 (5,3) 0.2450758 460.0262373 (0,0) 0.23552256 

 

With the help of the Table 3 the decision reached is as follows: 
               Table 4 

If   Reject H0 if (x,y)  
< 0.08 (5,3) 
= 0.107 (4,3) & (5,3) 
=0.15 (5,2), (4,3) & (5,3) 
= 0.16 (3,3), (5,2), (4,3) & (5,3) 
= 0.17 (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.200 (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)  
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= 0.201 (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.204 (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.21 (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.226 (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.2271 (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.2278 (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.229 (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.2333 (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.2334 (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.2336 (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & 

(5,3) 
= 0.234 (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), 

(4,3) & (5,3) 
= 0.23502 (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), 

(5,2), (4,3) & (5,3) 
= 0.23507 (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), 

(3,3), (5,2), (4,3) & (5,3) 
= 0.2351 (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), 

(4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.23542 (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), 

(5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.23544 (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), 

(2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.23550 (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), 

(3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
= 0.23552 (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), 

(4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3) 
 

Estimation Procedure: 
A. Bayes Procedure: 

Now the Bayesian approach is applied on this distribution. Using Bayesian method the Bayes estimate of the involved 
parameter, p is found. Then the Bayes risk and risk in case of original distribution are computed. 
 For this purpose, let us consider 
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Now substituting the binomial expansion of (1+p)m-y in the integration portion of the expression (3.1), it can be written as 
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Using this posterior distribution the maximum likelihood estimate of p can be obtained. 
The following steps will found the Bayesian estimation from the posterior distribution. 

Under SEL, the Bayes estimation with respect to (p) is 
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So, under square error loss the Bayes Estimate of p with respect to prior (p) is 
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= C (say). 
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B. Maximum Likelihood Estimation: 
This estimation is done and also a comparison is given in the following table. 
The maximum likelihood of p in classical method and Bayesian method and also the Bayes estimates of p with 

respect to the prior (p) is given in the following table (taking x=0-5, y=0-3,=2, =3): 
Values of (x, y) Accepted values of p in 

classical method 
[ML estimates] 

Accepted values of p in 
Bayesian method (i.e. in the 

posterior distribution) 
[ML estimates] 

  
 

Baye’s estimates of p 

(0,0) NA (0) 0.1159392 0.1796218 
(0,1) 0.2559191 0.2761045 0.3071429 
(0,2) 0.4171725 0.3977991 0.4107143 
(0,3) 0.5454764 0.5 0.5000000 
(1,0) 0.1702842 0.2201958 0.2629310 
(1,1) 0.3711419 0.3615899 0.3798077 
(1,2) 0.5164583 0.4745179 0.4772727 
(1,3) 0.6363635 0.5714321 0.5625000 
(2,0) 0.3112872 0.3175872 0.3433014 
(2,1) 0.4818915 0.4451788 0.4513889 
(2,2) 0.6146623 0.5507349 0.5434783 
(2,3) 0.7272721 0.6428568 0.6250000 
(3,0) 0.4391662 0.4104344 0.4213710 
(3,1) 0.5893767 0.5272325 0.5220588 
(3,2) 0.7119901 0.6264452 0.6093750 
(3,3) 0.8181791 0.7142792 0.6875000 
(4,0) 0.5592660 0.5000000 0.4975962 
(4,1) 0.6944718 0.6080283 0.5919540 
(4,2) 0.8085302 0.7017674 0.6750000 
(4,3) 0.9090926 0.785716 0.7500000 
(5,0) 0.6742002 0.5870874 0.5723140 
(5,1) 0.7977114 0.6878677 0.6611842 
(5,2) 0.9045345 0.7767435 0.7403846 
(5,3) 0.0000000 0.8571339 0.8125000 
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Hence the Bayes risk is given by 
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=0.0007318181 with absolute error < 1e-04    (using R 
software)  
Now, the risk in case of the joint distribution of X and Y 

are to be found. For this purpose  
Ef(x,y|p)(p- Ef(x,y|p)(p))2 is to be computed. 
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Hence the risk in case of joint distribution of X and Y can 
be found in the following way. 
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The integration can be solved as the earlier computations 
[e.g. the procedure followed to find (3.4)] using various 
values of di’s. 
Finally, using R software 
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i dpppyxfdp
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0

2 )()|,()(  = 0.002524987 

4. On Bivariate Normal:- 
 Let us suppose X = (X1,X2) has a Bivariate normal 
distribution with zero mean, standard deviation equal to 1 
and correlation parameter . 
Then the density of X is 
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Therefore  
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To compute the statistical curvature of this distribution 
firstly the moment generating function of bivariate 
normal distribution and its corresponding calculations are 
considered. 
The moment generating function of X ~ N( 0, 0, 1, 1, ) 
is given by 
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Equating the coefficients from both sides of (4.2), the 
bivariate moments are  
11 = coefficient of t1t2 =  
20 = coefficients of t1
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Also, ij = 0 if i+j is odd. 
Now V(T1) = V( x1
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V(T1) = 2 + 2 + 4 2 = 4(1+ 2)     (4.3) 
2

21
22

2
2

1212 1)()()()(  xxExxExxVTV    (4.4) 
And after calculation,  
Cov( T1,T2 ) = 4         (4.5) 
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With this information an R program is used to find the 
values of the curvature. 
The curvature of the mentioned distribution is given in 
the following figure: 
 

Figure3 
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 From the above figure it is observed that when the values 
of  lie between (-1,-0.5) and (0.5, 1) then this curved 
family performs just like the corresponding exponential 
family. But there is a good test statistic for bivariate 
normal distribution, belongs to exponential family, when 
the value of 0 (the value for null hypothesis) is equal to 
0. So, in this case a good statistic can not be found. 
 

Remark: 
The paper hopes, this can be done in other 

discrete curved family also and plenty of scope are there 
for doing further research. 
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