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Introduction

Curved exponential families of distributions play
an important role in theory of statistics. In case of
inference, for curved exponential family we can not find
test statistic as good, powerful and efficient as the
exponential family. But there is a ray of hope due to
Bradly Efron. He has shown in his paper, “Defining the
Curvature of a Statistical Problem (with Application to
Second Order Efficiency)” [1] that families with small
curvature enjoy the good statistical properties of
exponential families.

In curved exponential family, variance of
maximum likelihood estimator (MLE) exceeds the
Cramer-Rao lower bound. For curved exponential family
MLE is not the sufficient statistic in general. Nonetheless,
with small curvature, curved exponential family enjoys
good statistical properties. Firstly it is to be found that the
values of the involved parameters of the distributions, for
which, curvature have small values. Hence, after finding
such values, it can be suggested that for the values of the
parameter, the test statistic of certain hypothesis is
equivalent to that of the corresponding exponential
family. In this case it is found that some inference
procedures are available fragmentally for continuous
distributions. But for discrete cases we don’t find any
procedure. Motivated by my (Sanchayita Sadhu) project
work (submitted during the period of my post graduate
study), this paper wants to find some techniques of
inference in binomial distribution — a discrete
distribution.

Curved Exponential Family:-
Let X = (X}, Xa,..., X4) have a distribution Py, 6
€ © < R Suppose Py has a density (pmf) of the form

k
S(x[0)=exp(X 0 (O)T,(x) = F(O)h(x)

i=1
where k > q. Then the family {Py, 6 € ®} is called curved
exponential family.

Some Examples of Curved Exponential Family:

1. A set of independently and identically distributed
random variables which follow N (6, 6?), 0 is the

unknown parameter involved in the distribution
[4].

2. A random variable, say, X that follows gamma
(o, 1/a), o is the unknown parameter involved in

the distribution.
3. XandY, say, are two random variables such that
X ~B(n,p)
Y ~ B(m, p*)
where p is the unknown parameter involved in

both the distributions [4].

> independently

4. Let a random variable, say, X = (X;,X,) has a
Bivariate normal distribution with zero mean,
standard deviation equal to 1 and correlation
parameter p, p is the involved unknown
parameter [4].

5. Suppose Zi=z;,i=1,2,...,n. X; are independent
Poi(Az;) variables and Z,,Z,,...,Z, have some
joint p.m.f p(z1,2a,...,z,). It is implicitly assumed
that each Z; > 0 with probability 1. Then the joint
p.m.fof (X1, Xa,...,.Xn,21,Z,...,2,) 18

—Aizﬁr(ix,)logi n ZX'
f(xlaxb'",xnazlazb'u’zn |/1):e - o

=l

Ix,...x, €N,
Iz,..z, €N,

Np = set of non-negative integer, N; = set of
positive integers [4].

6. Equicorrelation Multivariate Normal distribution:
suppose (X1,Xo,...,X,) are jointly multivariate
normal with general mean L, variances all 1 and
a common pair wise correlation p. This is an
example of curved exponential family [4].

Applications of curved exponential family:-
First of all, some real life data, in which the
random variables belong to curved exponential family, is
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discussed. The analysis, done in this paper, hope to be
applied to the data to draw certain inference.

Some practical examples of curved exponential
family are discussed here.

»Mixed Ancestral Graph (MAG):-

The family of distributions represented by a
linear MAG M over a set of k variables is a locally
parameterized curved exponential family of dimension
equal to k(k+1)/2 minus the number of pairs of variables
in M that are not adjacent to each other. (Theorem 4;
Parameterizing and Scoring Mixed Ancestral Graphs by
Thomas Richdson & Peter Spirtes [2]).

»Lazega’s Lawyer dataset:-

Lazega’s Lawyer dataset [5] is another example
where the random variables of the dataset are from curved
family.

»Use in Social Networking:-

David. R. Hunter, in his paper, “Curved
Exponential Family Models for Social Networks”, [3] has
stated on the usefulness of curved exponential family

models on generalization of exponential random graph
model (ERGMs).

Concept of Statistical Curvature:-

The concept of mathematical curvature extends
to the curved lines in Euclidian k-space, Ek, say, £= {no,
00}, where O is the interval of real line. For each 6, ng
is a vector in E* whose component wise derivatives with

respect to 0 is denoted by
_(o )7 =0/ )
ne—(/ag o & 77958402 0
assumed to exist

These derivatives are
continuously in neighborhood of a value of 6 where it is
wished to define the curvature. Let us also suppose that a
kxk symmetric non-negative definite matrix Xq is defined
continuously in 6.

Let Mg be a 2x2 matrix, with entries denoted
v20(0), v11(0), voa(0),

defined by

Mez[umw) u,,<9>]=[n;'zgn; n;'zm] M
ﬁs‘zsﬁs ﬁs‘zsﬁs

U]](g) UOZ (9)
and let
Yo= (M, |10,° @) @
Then vy is “the curvature of £ at 6 with respect to inner
productZy”.

Statistical Curvature.-
Yo (given in (2)), the statistical curvature of F at 0, is the
geometric curvature of £={ng : 6 € O } at 6 with respect
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to the covariance inner product g as defined in (1) and
).

Here F will stand for the family of densities
{fy(x): 0 € B}, our curved exponential family.

Procedure for Finding Curvature of Various
Distributions from Curved Exponential Family:-

First the pmf/pdf of the random variables is
arranged as the known form of curved exponential family.
i.e. of the form

1(x16)=exp(n, (O)T, (x) = ¥(ONh()”
Then finding the values of 1; (8)’s and T; (x)’s the matrix

T

Dj :

T
is constructed, ﬁulE() 77>u 2 Mo' Zg Moy M, and UPYR/P
are computed and the matrix ~ Mp= [77‘9'2917}, 77};'29759] is

No'ZgMy Mg'TgMyg

_ . 3.
constructed. ‘MG‘/,)203(9)=‘M6‘/(n0'20n0) is then

computed. If there are some negative values in the above
result, then the absolute values are taken. Finally

., L :
QM 9‘/ 0203(9)) i.e. the statistical curvature for various

values of 0 is calculated.

Using this method the values of the statistical
curvature corresponding to the possible values of the
involved parameters are found. From these values it can
be easily concluded that for which values of the involved
parameters the curvature has small values and it can be
said that for these values of the parameters, the given
curved exponential family enjoys the good statistical
properties of exponential families.

The Area of Work:-

The details work of analysis to find these values
of involved parameters for which the curvature has small
values is done on the following distributions which are
some particular examples of curved exponential family.
The examples are given below:

1. A set of independently and identically distributed
random variables which follow N (6, 6?), 0 is the
unknown parameter involved in the distribution.

2. A random variable, say, X that follows
gamma(a,l/a), o is the unknown parameter
involved in the distribution.

3. XandY, say, are two random variables such that

X ~B(n,p)

Y ~B(m,p*)

where p is the unknown parameter involved in
both the distributions.

> independently
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4. Let a random variable, say, X = (X;,X;) has a
Bivariate normal distribution with zero mean,
standard deviation equal to 1 and correlation
parameter p, p is the involved unknown
parameter.

Curvature of some curved distributions:-
1. On Normal Distribution:-

Let X, X5,...,Xn are iid N(G,Gz).
Here

f(x/6) =[w127]"exp(— LS (-07)

204
= 1Y | RS 1 ox,
() 3T S

=k(0)exp(n; (0) T; + 1 (6) T») h(x)
Here,
m0)=1/6%, n,=1/6.

T=s, Ty, .
2 a2y
Now, the work is to find V(inz), V(zxij and

i

COV[ZXiz,ZXi].
It is known that the moment generating function of X will
be

Mx(t)= exp(9t+% 0°t%) (1.0)
Now,
V(inzj = ZV(xi2 ): E(xi4)— [E(xiz)]2

Therefore from (1.0) it can be computed that
E(x*= 100
~VXA=EXH-[E(xD)]* = 60

V[ZX,?] = ZV(X,.Z): 6n6*
V(ZX,.] = ZV(X,.): ng’.
Now, COV(Z X,.Z,ZX,) - icov(Xiz,X,.)

Cov(Xi, X;) = B(X{)- E(X?) E(X;) = 260°
. _ 3
. COV(ZX,Z,ZX,)_ 21’19 .

Hence the dispersion matrix (variance-covariance matrix)
is given by
o= (6;194 2n93j_
2n0°  nb*
Also,

1
No=1|0’
!
0
. ;1 . 3
Mo = g3 & U ra
-1 2
0’ 0
"'ﬁelzeﬁez[_l _1] 6n0* 2n0° 1
0> 0°) (200> no* ) |&
0
11n
:0—2 (1.1)
Similarly,
- - 30
N9'ZoNyg —973”' (1.2)
- - 30m
Mo 29779__? (1.3)
. . _827!
7]6'267]6_? (14)
So, My is given by
M -30n (15)
_| 6° 0’ ’
M, = -30n  82n
0 0
2
. 19%” —%=2L6 (1.6)
Mol =) Son 82
N
1nY 13312°
and 0203(9)=(97n] _ an (1.7)

1/2 1/2
.. Curvature=yy = ‘Mﬂ‘ ; :( 2 j (1.8)
Ly (0) 1331n

So, for all possible values of 0, the value of the curvature
is very small.

2. On Gamma Distribution: -
Let X be a random variable which follows
Gamma(a,1/a).
i.e X ~ G(a,l/a).
Then the pdf of X is given by

f(x/6)= (%j)x“'le_: 2.1)

I'a
X0 = €% ]

M)«

(a=1)log x—lx

“ h(x)

- k@®) e
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— k(o) o™ 0T+, (0)T h(x) 22

Here 1;(0) = a-1 and nx(0) = 1/a.
Ti=logx and T,=x
Now to find the required variances and covariance a
simulation procedure is to be followed. After computing
the required expressions, using an R program the values
of curvature are found.

The curvature of the mentioned Gamma
distribution is given in the following figure:

Figurel

Plot of the curvature of curved Gamma distribution
for various values of alpha

6e+51 8e+51 1e+52
I I

Value of the curvature
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2e+51
|

0e+00
L
\

o

So, from Figurel, it may be concluded that for o = 0 to
46 the value of the curvature is small.

3. On Binomial Distribution:-
Let X follows Binomial(n,p) and Y follows

Binomial(m,p?)
ie
X ~ B(n,
(n pz) >~ independently
Y ~B(m,p")

Then the joint p.m.f of (X, Y) is
n m v ) n—x m-y
p(x,y) =( J{ Jp*p”(l -p)"A=pH"
XNV

nym 2y _ _y -y
:( ]( ]p}ﬁ» ¥ (l_p)n X+m—y (1+p)m ¥
x\y

2

P
l-p

= exp[xlogﬁ + ylog
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7 T +m)log—p)+mlogl + p)} hi(x)

2

and () =log—£—
I-p

“ 1,(p) =log
lI-p

TI(XDY) =X, T2(X>Y) =Yy

With this information an R program is used to find the
values of the curvature.

The curvature of the mentioned distribution is given in
the following figure:

Figure 2
plot of the curvature of the
curved exponential family
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It is known that there is test statistic for single binomial
distribution. Here is the joint distribution of two
independent random variables which follow Bin(n,p) and
Bin(m,p®) respectively. So, for the values of p for which
the value of the curvature is small, any test statistic which
is valid in corresponding exponential family can not be
referred.

Inference of the Above Binomial Distributions:
» Test Procedure:

To overcome this problem this paper would like
to find out a test procedure to draw an inference about the
null hypothesis. Here is the likelihood ratio test.

From Figure 2 it is seen that for p=0.6 to 0.85 the
value of the curvature is small.

This paper wants to test

Hy:p=0.8 vs. H:p#0.8
To find LRT firstly the maximum likelihood estimator of
p is found.

dp(x, nym) oy nextm—y— m—y— 2 2
M{ j[ jp' Y= p) T (1 ) x4 294 pr— pr— pPn - 2mp’]
dp x\y

Page 20
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d’ p(x,y) L L e ctm—y-1 -1
TZ’ =(x—n—2pn—4pm) Ay T A=-p)" T+ )T + (x+ 2y + px— pn—

pzn—zmpZ)(zI’:)pW (=) "2 (14 p)"™ (= p)(1+ p)(x+2y—T) —

(n—x+m—-y-Dp(l+ p)+(m-y-Dp(l-p)]
dp(x,y)
dp
P =0.9090926  (3.0)

Therefore, for LRT

nym x+2y n—x+m-y m-y
Supp(x, y) (0.8)" " (1-0.8) 7 (14+0.8)™
H, B XAy

upp(x.) ("j(mj(o.909092§”2y (1-0.9090926""* (1+-0.9090925""
X\

Solving =0, taking n=5, m=3; [Using R],

Using R the values of A will be found.
Let us consider the following table, from which a decision can be made:

Table 3
Ob.No. (xy) A Sort(x)=q Corresponding Probability sum=s
(x,y)
1 (0,0) 460.0262373 0.2450758 (5,3) 0.08589935
2 (0,1) 171.7394474 0.6127021 (4,3) 0.10737418
3 (0,2) 64.1146861 0.6564672 (5,2 0.15569256
4 (0,3) 23.9356364 1.5317867 (3,3) 0.16106127
5 (1,0) 184.0067301 1.6412016 4,2 0.17314087
6 (1,1) 68.6943735 1.7584320 (5,1) 0.20031996
7 (1,2 25.6453497 3.8295451 2,3) 0.20166214
8 (1,3) 9.5740587 4.1030881 (3,2) 0.20468204
9 (2,0) 73.6011862 4.3961701 4,1) 0.21147681
10 2,1) 27.4771872 4.7101868 (5,0) 0.22676505
11 2,2 10.2579300 9.5740587 (1,3) 0.22710059
12 2,3) 3.8295451 10.2579300 2,2 0.22785556
13 (3,0) 29.4398721 10.9906500 (3,1) 0.22955426
14 (3,1 10.9906500 11.7757079 (4,0) 0.23337632
15 (3,2 4.1030881 23.9356364 (0,3) 0.23346020
16 (3,3) 1.5317867 25.6453497 (1,2 0.23364895
17 (4,0) 11.7757079 27.4771872 2,1) 0.23407362
18 (4,1) 4.3961701 29.4398721 (3,0) 0.23502914
19 4,2 1.6412016 64.1146861 (0,2) 0.23507632
20 (4,3) 0.6127021 68.6943735 (1,1) 0.23518249
21 (5,0) 4.7101868 73.6011862 (2,0) 0.23542137
22 (5,1) 1.7584320 171.7394474 (0,1) 0.23544791
23 (5,2) 0.6564672 184.0067301 (1,0) 0.23550763
24 (5,3) 0.2450758 460.0262373 (0,0) 0.23552256
With the help of the Table 3 the decision reached is as follows:
Table 4

If a Reject Hy if (x,y) =

<0.08 (5,3)

=0.107 (4,3) & (5,3)

=0.15 (5,2), (4,3) & (5,3)

=0.16 (33),(5.2), (4.3) & (5.3)

=0.17 (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.200 (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)
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=0.201 (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.204 (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.21 (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.226 (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.2271 (1,3), (5,0), 4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.2278 (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.229 (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.2333 (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.2334 (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.2336 (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) &
(5,3)

=0.234 (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2),
(43)&(5,3)

=0.23502 (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2), (3.,3),
(5,2), (4,3) & (5,3)

=0.23507 (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1), (4,2),
(3,3), (5,2), (4,3) & (5,3)

=0.2351 (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3), (5,1),
(4,2), (3,3),(5,2), (4,3) & (5,3)

=0.23542 (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2), (2,3),
(5,1), 4,2), (3,3), (5,2), (4,3) & (5,3)

=0.23544 (0,1), (2,0, (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1), (3,2),
(2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.23550 (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0), (4,1),
(3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

=0.23552 (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), (0,3), (4,0), (3,1), (2,2), (1,3), (5,0),
(4,1), (3,2), (2,3), (5,1), (4,2), (3,3), (5,2), (4,3) & (5,3)

» Estimation Procedure:
A. Bayes Procedure:
Now the Bayesian approach is applied on this distribution. Using Bayesian method the Bayes estimate of the involved
parameter, p is found. Then the Bayes risk and risk in case of original distribution are computed.
For this purpose, let us consider
X ~ B(n, p )

> independently , 0<p <1
Y~ Bm,ph) o

and let
p ~ Beta(a, B)
- w(p) = prior distribution of p
1
_ a-l(]_ Al
Bap)’ (1-p)

.. The posterior distribution of p is
S,y | p)e(p)

=q(p|x,y) =+
[ /Gy pr(p)dp
0
_ px+2y+a—1 (1 _ p)n—xﬁ-m—yﬁ-ﬂ—l (1 + p)m—y (3'1)
1
J.px+2y+a—1 (1 _ p)n—x-*—m—y-#ﬂ—l (1 + p)m—y dp
0

Now substituting the binomial expansion of (1+p)

m-y .

in the integration portion of the expression (3.1), it can be written as
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px+2y+a71 (1 _ p) n—x+m—y+p-1 (1 + p)mfydp

1l S C—_—y

O~ O C—y —

px+2y+a71 (1 _ p)nformnyrﬁfl [1 + (m _ y)p +(m7y) czp2 +(m7y) C3p3 + ]dp

1
px+2y+a71 (1 _ p)nformnyrﬁfl dp + (m _ y)J' px+2y+a+lfl (1 _ p)nformnyrﬁfl dp +
0

1 1
(m=y) 02 J' px+2y+a+27l (1 _ p) n—x+m—y+p-1 dp +(m7y) 03 J' px+2y+a+37l (1 _ p)nformnyrﬁfl dp + .. (32)
0 0

From (3.1) and (3.2)
px+2y+a71 (1 _ p)f’l*X‘Fﬂ‘l*y‘Fﬂ*l (1 + p) m—y

B(x+2y+a,n—x+m-y+p)+(m—-y)B(x+2y+1l+a,n—x+m—-y+ )+

q(plx,y)=

e B(x+2y+2+a,n—x+m—y+ B)+" ¢, B(x+2y+3+a,n—x+m-

v+ p)+...

B px+2y+a71 (l_p)nformnyrﬂfl (1 +p)mfy
= , say
L
Using this posterior distribution the maximum likelihood estimate of p can be obtained.
The following steps will found the Bayesian estimation from the posterior distribution.

Under SEL, the Bayes estimation with respect to nt(p) is

dy(x,y)=E"" (p)
=E(p|p~q(plx,y)

= | pq(p|x,y)dp

0
1 1
— szprrZerafl (1 _ p)l’l*X‘Fﬂ‘l*y‘Fﬂ*l (1 + p)mfy dp
0
1
:%jpx+2y+a+ll (1 _p)l’l*X‘Fﬂ‘l*y‘Fﬂ*l [1 +(m _y)p +(mfy) czpz +(mfy) C3p3 + ]dp
0

~E(plp~q(p]x.»)
1
=Z[B(x+2y+a +Ln—x+m—-y+p)+(m—-y)B(x+2y+a+2,n—x+m—y+ )

+" e B(x+2y+a+3n—x+m—y+ )+ c,B(x+2y+a+dn—x+m—y+ ) +..]

So, under square error loss the Bayes Estimate of p with respect to prior n(p) is
B(x+2y+a+ln—-—x+m—y+p)+(m—-y)B(x+2y+a+2,n—x+m—y+[5)

+" e B(x+2y+a+3n—x+m—y+B)+"V e, B(x+2y+a+dn—x+m—y+f)+..
B(x+2y+a,n—x+m—-y+pB)+(m—-y)B(x+2y+l+a,n—x+m—-y+ )+

e Bx+2y+2+a,n—x+m—y+ B)+" ¢,B(x+2y+3+a,n—x+m—

v+ p)+...
(3.3)
= C (say).
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B. Maximum Likelihood Estimation:
This estimation is done and also a comparison is given in the following table.
The maximum likelihood of p in classical method and Bayesian method and also the Bayes estimates of p with

respect to the prior ©(p) is given in the following table (taking x=0-5, y=0-3,0=2, f=3):
Values of (x, y) Accepted values of p in Accepted values of p in
classical method Bayesian method (i.e. in the
[ML estimates] posterior distribution) Baye’s estimates of p
[ML estimates]
(0,0) NA (0) 0.1159392 0.1796218
(0,1) 0.2559191 0.2761045 0.3071429
(0,2) 0.4171725 0.3977991 0.4107143
(0,3) 0.5454764 0.5 0.5000000
(1,0) 0.1702842 0.2201958 0.2629310
(1,1 0.3711419 0.3615899 0.3798077
(1,2) 0.5164583 0.4745179 0.4772727
(1,3) 0.6363635 0.5714321 0.5625000
(2,0) 0.3112872 0.3175872 0.3433014
(2,1) 0.4818915 0.4451788 0.4513889
(2,2) 0.6146623 0.5507349 0.5434783
(2,3) 0.7272721 0.6428568 0.6250000
(3,0) 0.4391662 0.4104344 0.4213710
(3,1) 0.5893767 0.5272325 0.5220588
(3,2) 0.7119901 0.6264452 0.6093750
(3,3) 0.8181791 0.7142792 0.6875000
(4,0) 0.5592660 0.5000000 0.4975962
(4,1 0.6944718 0.6080283 0.5919540
(4,2) 0.8085302 0.7017674 0.6750000
4,3) 0.9090926 0.785716 0.7500000
(5,0) 0.6742002 0.5870874 0.5723140
(5,1) 0.7977114 0.6878677 0.6611842
(5,2) 0.9045345 0.7767435 0.7403846
(5,3) 0.0000000 0.8571339 0.8125000
Vq(/)\x,y) (P)
— Eq(/)\x,y) (P _ C)Z

1
=I(p—C)2q(p|x,y)dp, where C is a p free quantity
0

1 0 X +a— n—x+m—y+f— m—y
=[P =2pC+ COp™ (1= ) (1 p) dp
0

1 1
— %[J‘ p.r+2y+a+271 (1 _ p) n—x+m—y+p-1 (1 + p)mfy dp _ 2CI p.r+2y+a+171 (1 _ p) n—x+m—-y+f-1 (1 + p) m-y dp + C2
0

0
1

J‘p.waHzfl (1 _ p) n—x+m—-y+p-1 (1 + p)mfy dp]

0
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1
:Z[B(x+2y+2+a,n—x+m—y+ﬂ)+(m—y)B(x+2y+3+a,n—x+m—y+ﬂ)+

(m=y)

,B(x+2y+4+a,n—x+m—y+p)+" c¢,B(x+2y+5+a,n—x+m—y+f)+..

-2C{B(x+2y+l+a,n—x+m—-y+pB)+(m—-y)B(x+2y+2+a,n—x+m—-y+ )+

+ D e B(x+2y+3+a,n—x+m—y+P)+" c,B(x+2y+d+a,n—x+m—y+ f)+..}

+CH{B(x+2y+a,n—x+m—y+p)+(m—y)B(x+2y +1+a,n—x+m—y+p)+"" ¢,

B(x+2y+2+a,n—x+m—y+B)+"" c.B(x+2y+3+a,n—x+m—y+f)+..}]

=2 (say)
Hence the Bayes risk is given by

(L o

_ ”(xj(’:dexdy

=0.0007318181 with absolute error < 1e-04
software)
Now, the risk in case of the joint distribution of X and Y
are to be found. For this purpose
EYP)(p- ETYP())? s to be computed.

E/SD (p—E"Y) (p) = E(p—d,)* whered, is the likelihoodestimateof p for the i"
combinatia of X and Y.

Hence the risk in case of joint distribution of X and Y can

be found in the following way.

E(p_di)z

(using R

=X [(p-d) f(x,y| Px(p)dp

Xy 0

n\(m); 2 x+2y+a-l c+m—y+f-1 )
- Z( J( J J(p=d)y p2 e = py = (U ) dp
X,y x y 0

The integration can be solved as the earlier computations
[e.g. the procedure followed to find (3.4)] using various
values of d;’s.

Finally, using R software

Y [(p=d) f(x,y| pya(p)dp = 0-002524987

XY 0

4. On Bivariate Normal.:-

Let us suppose X = (X;,X;) has a Bivariate normal
distribution with zero mean, standard deviation equal to 1
and correlation parameter p.

Then the density of X is

fxlp)=

1 1 2 2
exp| — X, +x,” —2pxx,||Ix,,x, €R
Py 1—p2 p|: 2(1—,02)(1 2 PX, 2):| 1>%2

2 2
= ! exp _ 4 +x22 +—P >x,x, [Ix,x, €R (4.1)
2741 - p? 2(0=-p7) 1-p
Therefore

3.4)
M= Lm=xtex)]
2(1-p7)
17, :# T, (x) = xx,
V)  cov(,T,)
) [cov(rl,m V(T,) ]

To compute the statistical curvature of this distribution
firstly the moment generating function of bivariate
normal distribution and its corresponding calculations are
considered.
The moment generating function of X ~N( 0, 0, 1, 1, p)
is given by

M(t,,t,) = exp[%(ﬁz +2ptt, + tzz)]

R (t12+2pt1t2+t22)k 42
‘DZ.:;;”J it _; 2k “2

Equating the coefficients from both sides of (4.2), the
bivariate moments are

p11 = coefficient of t1t, = p

L = coefficients of t;%/2! = 1
2

Lo = coefficient of % =1

4
Ugo = coefficient of ZAIT' =3

4

Los = coefficient of L =3
4!

2 .2

tt
— coefficient of ——2—=2p° +1
L2 = coefticient o N ol Jol

Also, p;; = 0 if i+j is odd.
Now V(T)) = V(x[" +x5)
:V(xlz) + V(xzz) + ZCOV(XIZ,XZZ)
Now, ¥(x,") = E(q,") = E>(x,") = gy — 1o =3-1=2
Vixs) =2
&
COV(x1zax22) = E(x12x22) _E(x12)E(x22) = Hyp = HygHoy = 2,02
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SWV(T) =2+2+4p =4(1+p) (43)

V(T,) =V (xx,)=E(x’x,)) - E*(x,x,) =1+ p*> (44
And after calculation,

Cov( T,,T,)=4p 4.5)

2
s = (4(1+ pl)  4p ZJ “6)
4p I+p
With this information an R program is used to find the
values of the curvature.
The curvature of the mentioned distribution is given in
the following figure:

Figure3

Plot of the Curvature of the
inti d Curved E ial Family
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From the above figure it is observed that when the values

of p lie between (-1,-0.5) and (0.5, 1) then this curved
family performs just like the corresponding exponential
family. But there is a good test statistic for bivariate
normal distribution, belongs to exponential family, when
the value of py (the value for null hypothesis) is equal to
0. So, in this case a good statistic can not be found.

Remark:

The paper hopes, this can be done in other
discrete curved family also and plenty of scope are there
for doing further research.
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