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Abstract: D- Optimality is one of the most commonly used 
design criteria for linear regression model. In industrial 
experiments binary or count data often arise, for example 
defective/non- defective or number of defects. For such data 
(GLMS) are appropriate Generalized Linear Models are 
especially useful for actuarial applications, since they allow  
estimate multiplicative models, and also allow forms of 
heteroscedasticity such as they are found frequently in actuarial 
problems, of Poisson-type, of gamma-type with a fixed 
coefficient  of variation. An analogous D-optimality design 
criterion can be developed using asymptotic covariance matrix, 
for GLM, this matrix is a weighted version of the covariance 
matrix for the linear case, and the extension of existing D-
optimality algorithm. We consider the problem of finding an 
optimal design under a compound Poisson regression model with 
a, any number of independent variables and a reciprocal link 
additive model linear predictor. Local D-optimality of a class of 
designs is established through use of a canonical form of the 
problem and a general equivalence theorem. The theorem is 
applied in conjunction with clustering techniques to obtain a fast 
method of finding designs that are robust to wide ranges of 
model parameter values.  
Key words: Compound Poisson, Clustering, Locally optimal 
design, Inverse link models.  
 

 Introduction:  
 D-optimality is a standard optimal design for linear 
regression model, partly because it corresponds to 
minimizing the area of confidence region for unknown 
parameters, and partly because it is reasonably easy 
mathematically and computationally. In actuarial 
statistics non-normal response are often measured. For 
such a data Compound Poisson regression models is 
appropriate (see for example McCullagh and Nelder 
1989 and Dobson 1983). Compound Poisson optimal 
design criterion have been developed for the 
exponential dispersion model are directly applicable to 
the compound Poisson distribution applications of this 
particular compound distribution, primarily in the form 
of generalized linear models [GLM], have been found 
in actuarial science (Smyth and J_rgensen 2002), 
animal studies (Perry 1981), assay analysis (Davidian 
1990), botany studies (Dunn and Smyth 2005), survival 
analysis (Hougaard, Harvald, and Holm 1992), rainfall 
modeling (Dunn 2004) and _shery research (Shono 
2008). An often neglected part of the analysis is the 
estimation of the unknown variance function, i.e., the 
index parameter p. This parameter has a signi_cant 

impact on hypothesis tests and predictive  Uncertainty 
measures (Davidian and Carroll 1987; Peters, 
Shevchenko, and W uthrich 2009; Zhang 2012),  
which is of independent interest in many applications.  
One approach in estimating the Variance function is 
using the prole likelihood (Cox and Reid 1987). For the 
compound Poisson distribution, such an approach must 
be implemented based on the true likelihood rather than 
the extended quasi-likelihood (Nelder and Pregibon 
1987).   Unlike other compound distributions whose 
density must be approximated via the slow recursive 
approach (Klugman, Panjer, andWillmot 2008), 
methods that enable fast and accurate numerical 
evaluation of compound Poisson density function are 
available (Dunn and Smyth 2005, 2008). These 
methods are provided by the tweedie package (Dunn 
2011). With the density approximation methods, we can 
carry out not only maximum likelihood estimation but 
also Bayesian inference using Markov chain Monte 
Carlo methods (Gelman, arlin,Stern, and Rubin 2003). 
 

The D-Optimality Criterion for Compound 
Poisson Model 
The motivation for a D-optimality criterion for GLMs 
can be seen as a simple extension of the linear case. 
One way of viewing the linear case is that a D-optimal 
design will yield the smallest confidence regions for the 
parameters of interest. In the GLM setting, confidence 
statements are often made on an asymptotic basic, via 
the information matrix. The inverse expected 
information matrix  is the analogue of the 
covariance matrix of the coefficients in the linear 
model. Thus to minimize the size of confidence regions 
for GLM parameter estimates,   is used in place of 
the covariance matrix 1' )( XX . For members of the 
GLM family compound Poisson distribution follows 
Gamma distribution, the information matrix has an 
inverse form, which is the main reason that specific 
extension is considered. Before illustrating this form, 
we define some notation for Compound Poisson model. 
If Y is the response vector, and corresponding values of 
the predictor variables are in the matrix X, then the 
expected value of response Y  is related to the 
predictors xi via the given “ inverse link” function g: 



S. Joshua David and C. Santharam 

 

 
                                           
  )()(/ '  gxgxYE iiii   

  Where
)(

1
x

  ,   is a vector of parameters to be 

estimated. The variance of the response is given by: 
Var   )(/ 2

iii VxY  . 
The expected information does not depend on the form 
of the distribution beyond the mean and variance 
relations stated above. Dobson (1983, Appendix 2) 
shows that for GLMs with the above specification, the 

thjk  element of the expected information matrix is 
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This can be written in matrix notation: I =  
Where W is a diagonal matrix with elements: 

 
Thus the asymptotic variance covariance matrix 

1'1 )(   XXI  is of a similar form to the covariance 
matrix 1' )( XX . 
The simplest form of Compound Poisson model use the 
inverse link function given as follows.  
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 The information matrix under the inverse gamma 
model, given an observation at x, is 
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The important application for this model is to find the 
point of maximum or minimum response and to 
estimate the parameters. The optimal design is the 
choice of points and corresponding weights that 
optimize the selected criterion function; the criterion 
function is commonly related to precision of the 
parameter estimates, such as the size of a confidence 
region of the sum of the variance of the parameter 
estimators. The criterion function involves the 
standardized information matrix. The standardized 
information matrix given a particular design   is the 

weighted sum of the contributions from each of the n 
design points.  
The D-Optimality is the most common criterion `which 
seeks to maximize , the Determinant of the 
information matrix (X’X) of the design' 
(NIST/SEMATECH 2007,ch. 5.5.2). This means that 
the optimal design matrix X* contains the n 
experiments which maximizes the determinant of (X’X) 
Or in other words, the n runs `span the largest volume 
possible in the experimental region' (Eriksson et al. 
2000, p. 216).Selection of X*out of all possible design 
matrices chosen from N. This connection between the 
design matrix and the determinant also explains the use 
of the “D" in the term D-optimal designs. 

 
Maximizing the determinant of the information matrix 
(X’X) is equivalent to Minimizing the determinant of 
the dispersion matrix .  
D-optimality criterion is just to maximize the 
determinant of the Fisher information matrix. 
Using such an idea, the D-efficiency of an arbitrary 
design, X, is naturally defined as 
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X* is the true optimal design.  
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There are several methods to the practise of 
determining the optimal design. These include 
algorithms, analytical, numerical and graphical 
methods.  

The derivation of D-optimal designs will be 
illustrated for three parameter sets:  

θA=(-3 , 1 0); θB=(0,1,0) and θC=(3,1,0) 
Step 1: To find the symmetric design 

consisting of p=3 points with equal design weights 
is assumed. 
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The optimal design depends on the values of β, 
so if they are known we can find the optimal design. 
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The linear predictor is 
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we plot the 

optimal design for varying β1. The curve represents 
linear predictors for the various mean values as a 
function of x for fixed β0. The slope β1 is varied to 
produce different linear predictors; we find that optimal 
design is increasing when the mean values are 
decreasing. The optimal design has equal allocation 
between [-1, 1].  
Table: Support points of the locally D-optimal design for the 
Compound Poisson model for various values of i  

Μi β1=.1 β1=.3 β1=.5 β1=.7 β1=.9 
2 0.833333 0.625 0.5 0.416667 0.357143 

1.818182 0.846154 0.647059 0.52381 0.44 0.37931 
1.666667 0.857143 0.666667 0.545455 0.461538 0.4 
1.538462 0.866667 0.684211 0.565217 0.481481 0.419355 
1.428571 0.875 0.7 0.583333 0.5 0.4375 
1.333333 0.882353 0.714286 0.6 0.517241 0.454545 

1.25 0.888889 0.727273 0.615385 0.533333 0.470588 
1.176471 0.894737 0.73913 0.62963 0.548387 0.485714 
1.111111 0.9 0.75 0.642857 0.5625 0.5 
1.052632 0.904762 0.76 0.655172 0.575758 0.513514 

1 0.909091 0.769231 0.666667 0.588235 0.526316 
0.952381 0.913043 0.777778 0.677419 0.6 0.538462 
0.909091 0.916667 0.785714 0.6875 0.611111 0.55 
0.869565 0.92 0.793103 0.69697 0.621622 0.560976 
0.833333 0.923077 0.8 0.705882 0.631579 0.571429 

0.8 0.925926 0.806452 0.714286 0.641026 0.581395 
0.769231 0.928571 0.8125 0.722222 0.65 0.590909 
0.740741 0.931034 0.818182 0.72973 0.658537 0.6 
0.714286 0.933333 0.823529 0.736842 0.666667 0.608696 
0.689655 0.935484 0.828571 0.74359 0.674419 0.617021 
0.666667 0.9375 0.833333 0.75 0.681818 0.625 
 

 
 

Conclusion: 
The analytic contraction of D-optimal 

Compound Poisson model with inverse link function 
were derived to obtain locally D-optimal design, the 
solution to these formulae can be obtain numerically 
using R- software in contrast to using for examples 
algorithms which involve issues like finding a good 
initial design. Thus the locally D-optimal design 
depends only on the parameters β with varying Xi 
values it is the function of mean values. We conclude 
that when the optimal design with inverse link function 
have a inverse relationship between function of mean 
values and the predicted vales. When the function of 
mean values is decreasing the predictors are increasing 

the design involves asymptotic information matrix. The 
linear predictor attains maximal optimal values for the 
different β values it converges to one for various 
functional mean values.  

 

References: 
1. Silvey, D., 1980. Optimal Design, Chapman and 

Hall, London. 
2. Bai, D.S., Chung, S.W.: An optimal design of 

accelerated life test for exponential 
distribution.Reliab. Eng. Syst. Saf. 31, 57–64 
(1991). 

3. Hugh A. Chipman and William J. Welch. D-
optimal Design for Generalized Linear Models, 
Chicago (1996). 

4. Holger Dette, Viatcheslav B. Melas and Weng 
Kee Wong: Locally D-Optimal Design for 
Exponential Regression Models. Los Angeles. 
Statistica Sinica 16(2006). 

5. Santharam, C., Ponnusamy, K.N and 
Chandrasekar, B.,Universal optimality of nearest 
neighbour balanced block designs using 
ARMA models. Biometrical.J. 32,725 – 730, 
1996. 

6. RUBAN RAJA. B, SANTHARAM. C and 
RAMESHKUMAR, (2012) MV-Optimality of 
Nearest Neighbour Balanced Block Designs using 
First order and Second order correlated 
models, International Journal of Statistika and  M
athematika, (ISSN: 2277-2790 E-ISSN: 2249-
8605) 


