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Introduction 
 The study of women fecundability has 

controversially been adopted by different workers. The 

utility of the study depends upon the proper adoption of 

the fecundability of women. In most of the available 

literature, it is found that the fecaundability is assumed to 

be constant for all women [Singh (1964a), Pathak 

(1978)]. But in real life there are ample evidences that 

women vary in their fecundability. So, the fecundability 

may be thought of as a random variable {Henry (1995), 

Singh (1964)}. The present work deals with the same 

concept. Let us suppose that fecundability, say θ, follows 

distribution with p.d.f. g (θ). If T is waiting time for first 

conception can be treated as random variable which 

follows the distribution with p.d.f. f(x/θ) is regarded as a 

conditional p.d.f. of X for given θ where marginal 

probability density function of θ is given by g(θ) the 

study can be continued. 
 

The Continuous Fertility Model 
The geometric distribution is being considered as 

a discrete model for the waiting time first conception as 

developed by Gini (1924) the continuous model for the 

analysis of waiting time of first conception. The intuitive 

properties of exponential distribution also helped in such 

considerations. For such analysis Geometric distribution 

was replaced by the exponential distribution. Thus if x 

denotes the time of first conception, then its probability 

density function, say f(x;θ) is given by 

 f (x; θ) = 
�
θ

e�� θ⁄ ; x > 0, θ > 0      (2.1.1) 

Where θ is instantaneous fecundability. 

The survival function, say S (x) is given by 

S (x) = P[X > x]  = � �
θ

∞� e�� θ⁄ dx 

 = �
θ

	
�� θ⁄
�
θ

�
�
∞

 

 Or S(x)=e�� θ⁄                        (2.1.2) 

 And the conception rate, say w(x) will be  

W(x) = 
�(�)
� (�) 

 = 


θ

�� θ⁄


�� θ⁄  

 =  �
θ
         (2.1.3)  

 

Maximum Likelihood Estimator 

F (x ∕θ) = ∏ f(x� ; θ)����  

 =��
θ
�� e�� θ⁄         (2.1.4)  

Where z = ∑ x� ����  
 

Bayesian Analysis of the Model 
The first conception of the family is also a part of 

the past family back ground; therefore Bayesian analysis 

of conception seems realistic on the basis of some history. 

In the some coming section the Bayesian analysis has 

been done for a continuous time model i.e. exponential 

distribution.  

We have 

f(x/θ) = θ e�θ�; x > 0, θ > 0  

Where θ is the instantaneous fecundibility. 

The fundamental problems in Bayesian Analysis are that 

of the choice of prior distribution g(θ) and a loss function 

L (θ�, θ). Let us consider three prior distribution of θ to 

obtain the Bayes estimators which are as follows:  
 

(i) Quasi-Prior 

 For the situation where the experimenter has no prior 

information about the parameter θ, one may use the 

quasi density ass given by   g�(θ) = 
�
θ

" ; θ > 0, d > 0      (2.1.5) 

Here d = 0 leads to a diffuse prior and d = 1, a 

non informative prior. 
 

(ii) Natural Conjugate Prior of θ 

 The most widely used prior distribution of θ is the 

inverted gamma distribution with parameters α and β 

(>0) with p.d.f. given by  

 g$(θ) = % β
α

Γ(α)  θ�(α&�) e�β θ⁄  ; θ > 0 (α, β) > 0
0 ;  otherwise /     (2.1.6) 

 The main reason for general acceptability is the 

mathematical tractability resulting from the fact that 

inverted gamma distribution is conjugate prior for θ. 
 

(iii) Uniform Prior 
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It Frequently happens that the life tester knows in 

advance that the probable values of θ lies over a finite 

range [α, β] but he does not have any strong opinion 

about any subset of values over this range. In such a case 

uniform distribution over [α, β] may be a good 

approximation. 

 g0(θ) =1 �
β�α ;  0 < α < θ ≤ β

0 ;  otherwise /       (2.1.7) 

 

Loss Function 

 The Bayes estimator θ� of θ is of course, optimal relative 

to the loss function chosen. A commonly used loss 

function is the squared error loss function (SELF) 
 

 L (θ�,θ) =(θ� − θ) $,        (2.1.8) 

which is a symmetrical loss function and assigns 

equal losses to over estimation and underestimation. 

Canfield (1970) points out that the use of symmetric loss 

function may be inappropriate in the estimation of 

reliability function. Over estimation of reliability function 

or average lifetime is usually much more serious than 

under estimation of reliability function or mean failure 

time. Also, an under estimate of the failure rate results in 

more serious consequence than an overestimation of the 

failure rate. This leads to statistician to think about 

asymmetrical loss functions which have been proposed in 

statistical literature. It is well known that the Bayes 

estimator under the above loss function, say θ�s, is the 

posterior mean. The squared error loss function (SELF) is 

often used also because it does not lead to extensive 

numerical computation but several authors {Ferguson 

(1967), Varian (1975), Berger (1980), Zellner (1986) and 

Basu and Ebrahimi (1991)} have recognized the 

inappropriateness of using symmetric loss function in 

several estimation problems. These have proposed 

different asymmetric loss function. 
 

Precautionary Loss Function 

Norstrom (1996) introduced an alternative 

asymmetric precautionary loss function and also 

presented a general class of precautionary loss function 

with quadratic loss function as a special case. These loss 

function approach infinitely near the origin to prevent 

underestimation and thus giving a conservative 

estimators, especially when low failure rates are being 

estimated. These estimators are very useful when under 

estimation may lead to serious consequences. A very 

useful and simple asymmetric precautionary loss function 

is  

 L(θ�, θ) = 
(θ��θ)5
θ�         (2.1.9) 

The posterior expectation of loss function in (2.1.18) is  

 Eπ7L(θ�, θ) 9=Eπ �θ5
θ� � + Eπ (θ�) − 2Eπ(θ)   (2.1.10) 

 The value of θ� that minimises (2.1.10), denoted by θ�<, 

Bayes estimater of θ under Precautionary loss function is 

obtained by solving the following equation 

 ddθEπ7L(θ�, θ) 9 = 0 

 ⇨?Eπ @θ$ A− �
θ�B5CD + Eπ(1)F= 0 

 ⇨A− �
θ�B5C EπGθ$H =  −1 

 ⇨θ�< = 7EπGθ$H95       (2.1.11) 
 

2. Bays Estimator under IJ(θ) 
Under K�(θ), the posterior distribution is defined by 

 fGLMNH = 
O�GPMQH�R(Q) 

� O�GPMQH�R(Q)SQ∞T
 (2.2.1) 

 Substituting the values of K�(L) UVW XGNMLHfrom 

equations (2.1.9) and (2.1.7) in (2.2.1) we get, after 

simplification, as  

 fGLMNH = 
�Y�ZA ∏ [\Z\] C ^�(_Y) 

Y`
� �Y�ZA ∏ [\Z\] C^�(_Y) 

Y`SQ∞T
      (2.2.2) 

 =  ab&S��
c(V + W − 1) L�(b&S)d�e Q ; Qfg,b&Sf�.⁄  

 The Bayes estimator under squared error loss function is 

the posterior mean given by 

 L�i =� L∞g  fGLMNHWL. (2.2.3) Substituting the values of 

f GLMNH from equation (2.2.2) in equation (2.2.3) and on 

solving we get 

 L�i  =� eZj`�
k(b&S��)∞g L�(b&S)d�(e Q⁄ )WL 

 = eZj`�
k(b&S��) � L�(b&S)d�(e Q⁄ )∞g WL 

 = eZj`�
k(b&S��) 

k(b&S�$)
eZj`�5  

 L�i = e
b&S�$  ; n+d>2 .       (2.2.4) 

 The Bayes estimator under precautionary loss function, 

say L�l,mnoVK pℎd rUsmd tX fGLMNH from equation (2.2.2) 

is the solution of equation (2.1.11) given by 
 

 L�l =uvw(L$)x5 

 =7� L$XGLMNH∞g WL95 

 =y eZj`�
k(b&S��) � L�(b&S�$)d�(e Q⁄ )WL∞g z5

 
 

On simplification which leads to  L�l = e
u(b&S�$)(b&S�0)x5       (2.2.5) 

 

3. Bayes Estimator UnderI{(|) 
 Under K$(L), the posterior distribution is defind by 

 f (L N⁄ )  = O�GPMQH�R5(Q) 
� O�GPMQH�R5(Q)SQ∞T

       (2.3.1) 

Substituting the values of K$(L) UVW XGN L⁄ H from 

equations (2.1.10) and (2.1.7) in (2.3.1) and simplifying, 

we get  
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 fGLMNH = 
�Y�ZA ∏ [\Z\] C ^�(_Y) }~

�(~)�Y�~j^�} Y⁄

� �Y�ZA ∏ [\Z\] C ^�(_Y) }~
�(~)�Y�~j^�} Y⁄ SQ∞T

 

 = (�&e)Zj~
k(b&�) L�(b&�&�)d�Y(�&e)        (2.3.2) 

The Bayes estimator under squared error loss function is 

the posterior mean given by 

 L�� = � L∞g  fGLMNHWL       (2.3.3) 

Substituting the values of f (L N⁄ )from equation (2.3.2) in 

equation (2.3.3) and on solving, we get 

 L�� = (�&e)Zj~
k(b&�) � L�(b&�)d�Y(�&e)∞g WL 

 =  (�&e)Zj~
k(b&�)  k(b&���)(�&e)Zj~� 

 L��  = �&e
(b&���)        (2.3.4) 

  

 The Bays estimator under precautionary loss function 

using the value of f GL N⁄ Hfrom equation (2.3.2) is the 

solution of equation (2.1.11) given by 

 L�l = uvw(L)$x5 =  7� L$XGLMNHWL∞g 95 

 =y(�&e)Zj~
k(b&�) � L�(b&���)d�Y(�&e)WL∞g z5

 

which on simplification, leads to  

 L�l = �&eu(b&���)(b&��$)x 5⁄        (2.3.5)  

 Bayes Estimator Under I�(|) 

 Under K0(L), the posterior distribution is defined by 

 f GLMNH  = O�GPMQH�R�(Q) 
� O�GPMQH�R�(Q)SQ∞T

       (2.4.1) 

Substituting the values of K0(L) UVW XGLMNHfrom 

equations (2.1.11) and (2.1.7) in (2.4.1) we get, after 

simplifying, we get  

 f GLMNH = �Y�ZA ∏ [\Z\] C ^�(_Y) (}�~)
 �  �Y�ZA ∏ [\Z\] C ^�(_Y) (}�~)SQ}~  ,  = 

eZ�Q�Z^�_ Y⁄ )
���_~,b�����_},b���,      (2.4.2) 

Where 

 �R(N, V)= � d�PPg Nb��dt is the incomplete gama function 

The Bayes estimator under squared error loss function is 

the posterior mean given by 

 L�i = � L��  fGLMNHWL       (2.4.3) 

Substituting the values of fGLMNH from equation (2.4.2) in 

equation (2.4.3) , we get 

 L�i  =� L�� eZ�Q�Z^�_ Y⁄
���_~,b�������_},b���dL 

which on simplification leads to 

 L�i = ����_~,b�$�����_},b�$�
���_~,b�������_},b����z.       (2.4.4) 

  

 The Bayes estimator under precautionary loss function 

using the value of XGLMNH from equation (2.4.2), is the 

solution of equation (2.1.11) given by 
  L�l = uvw(L)$x5 

 = 7� L$XGLMNHWL∞g 95 

 = 	 ���
����

α
,���������

β
,���� � θ

�(��$)β

α
e�� θ⁄ �

5
 

 or, θ�< =  	����
α

,��0������
β
,��0�

����
α

,���������
β
,�����

5 z.    (2.4.5) 

The equations (2.4.4) and (2.4.5), can be solved 

numerically. 
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