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1. Introduction 
Generalized order statistics (GOS) have been introduced 

and extensively studied in Kamps (1995 a,b) as a unified 

theoretical set-up which contains a variety of models of 

ordered random variables with different interpretations. 

Examples of such models are:  Ordinary order statistics, 

Sequential order statistics, Progressive type II censored 

order statistics, Record values, k
th

 record value and 

Pfeifer’s records. There is no natural interpretation of 

generalized order statistics in terms of observed random 

samples but these models can be effectively applied in 

life testing and reliability analysis, medical and life time 

data, and models related to software reliability analysis.  

The common approach makes it possible to define several 

distributional properties at once. The structural 

similarities of these models are based on the similarity of 

their joint density function. For the case , when F(.) is an 

inverse distribution function, we need the concept of 

lower generalized order statistics, which was first 

introduced by Pawlas and Szynal ( 2001) as described 

below in the next section. 

2. Lower Generalized Order Statistics 

Let 
{ }, 1

n
X n ≥

be a sequence of absolutely continuous, independent and identically distributed random variables with 

cdf 
( )F(x) P X x= ≤

and pdf f(x). Assume k > 0, n∈{ 2,3,…}, 
( ) n 1

1 2 n 1m m , m ,..., m R −
−= ∈�

, 

n 1

r j

j r

M m
−

=

=∑
, such that 

( )r k n r (m 1) 0γ = + − + >
for all  

{ }r 1,2,..., n 1∈ −
. Then 

( )*X r, n, m, k�
, r = 1, 2,…,n , are called Lower 

Generalized Order Statistics (LGOS) if their joint pdf is given by  

( ) ( ) ( ) ( ) ( ) ( )
* * *

i

n 1 n 1
m k 1X 1,n,m,k , X 2,n,m,k , ...,X n,n,m,k

1 2 n j i i n n
j 1 i 1

f x , x ,..., x k F(x ) f (x ) F(x ) f (x ) ,
− −

−

= =

  
= Π γ Π  

  

� � �

             (2.1) 

where 
1 1

1 2 nF (0 ) x x ... x F (1)− −+ > ≥ ≥ ≥ >
 and 

( )*X 0,n, m,k 0.=�
 

By choosing appropriate values of parameters, we get the distribution of a few very common statistics as shown in Table 

2.1 given below.  
 

Table 2.1 

S.No. Choice of parameters for LGOS becomes 

1 m = 0 and  k = 1 ( )* th

n r 1:nX r,n, m, k X ,(n r 1)− += − +
order statistics 

2 m 1= −  ( )*X r,n, m, k
 rth lower k record value 

 

The joint pdf of first r, LGOS is given by : 
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( ) ( ) ( ) ( ) ( ) ( )
* * *

i r

r 1
m k n r M 1X 1,n,m,k , X 2,n,m,k , ..., X r,n,m,k

1 2 r r 1 i i r r
i 1

f x , x ,..., x c F(x ) f (x ) F(x ) f (x ) ,
−

+ − + −

−
=

 
= Π 

 

� � �

                      (2.2) 

where 
1 1

1 2 rF (0 ) x x ... x F (1)− −+ > ≥ ≥ ≥ >
. 

We now consider two cases: 

Case I: m1  =  m2 = …= mn −1 = m 

Case II: i jγ ≠ γ   ; i ≠ j , i , j =  1, 2, …, n - 1.  

For case I, the LGOS will be denoted by X
*
(r, n, m, k). The pdf of X

*
(r, n, m, k) is given by  

( ) ( ) ( ) ( )
*

r 1r 1X r,n,m,k r 1

m

c
f x F(x) f ( x ) g F(x) , x R

(r 1)!

γ −− −= ∈
−

,                 (2.3) 

 and the joint pdf of X
*
(r, n, m, k) and X

*
(s, n, m, k),   1 ≤ r < s ≤ n,  is given by : 

( ) ( ) ( ) ( )( ) ( )
* * ms 1X r, n,m, k , X s, n,m,k r 1

m

c
f x, y F(x) f (x) g F(x)

(r 1)! (s r 1)!

− −=
− − −

 

           . ( ) ( ) ( ) s
s r 1 1

m mh F(y) h F(x) F(y) f (y) , x y
− − γ −

− >   ,                 (2.4) 

where  
r

r 1 j j
j 1

c , k (n j)(m 1) , r 1, 2,..., n−
=

= Π γ γ = + − + = ,  

m m mg (x) h (x) h (0) , x (0,1)= − ∈  and  

m 1

m

x
, m 1,

h (x) m 1

log x , m 1.

+
− ≠ −

= +
− = −

                     (2.5) 

For case II, the LGOS will be denoted by ( )*X r,n, m, k� . The pdf of  ( )*X r,n, m, k�  is given by  

( ) ( ) ( )
*

i

r
1X r,n,m,k

r 1 i

i 1

f x c f (x) a (r) F(x) , x R
γ −

−
=

= ∈∑� ,                  (2.6) 

 and the joint pdf of ( )X r, n,m, k�  and ( )X s, n,m,k� ,  1 ≤ r < s ≤ n,  is given by 

( ) ( ) ( ) ( )
i

* *
i

s r
X r, n,m, k , X s, n,m,k r

s 1 i i

i r 1 i 1

F(y) f (x) f (y)
f x, y c a (s) a (r) F(x) ,

F(x) F(x) F(y)

γ

γ

−
= + =

    
=    

     
∑ ∑� �                 (2.7) 

where 
s

s 1 j j j
j 1

c , k n j M ,s 1, 2,..., n−
=

= Π γ γ = + − + = . 

 Further, it can be proved that  

 (i)    
( )

( )
r 1

i j i
j i 1

a (r) , 1 i r n
−

≠ =
= Π γ − γ ≤ ≤ ≤  

(ii)    
( )

( )
s 1

r

i j i
j i r 1

a (s) , r 1 i s n
−

≠ = +
= Π γ − γ + ≤ ≤ ≤  

(iii)    ( )i r 1 i ia (r) a (r 1)+= γ − γ +  

(iv)    r r 1 r 1c c − += γ  

(v)    

r 1

i

i 1

a (r 1) 0
+

=

+ =∑ . 

The moments of order statistics have generated considerable interest in the recent years. Several recurrence relations and 

identities satisfied by single as well as product moments of  order statistics have been obtained by various authors in the 

past. These relations help in reducing the quantum of computations involved. Joshi (1978, 1982) established recurrence 

relations for exponential distribution with unit mean and were further extended by Balakrishnan and Joshi (1984) for 

doubly truncated exponential distribution. For linear-exponential distribution, Balakrishnan and Malik (1986) derived the 
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similar type of relations which were extended to doubly truncated linear-exponential distribution by  Mohie El-Din et al. 

(1997) and Saran and Pushkarna (1999). Nain (2010 a, b) obtained recurrence relations for ordinary order statistics and 

k
th

 record values from  p
th

 order exponential and generalized Weibull distributions, respectively. The recurrence relations 

for the moments of generalized order statistics based on non identically distributed random variables were developed by 

Kamps (1995 a, b). Pawlas and Szynal (2001) obtained recurrence relations for single and product moments of 

generalized order statistics from Pareto, generalized Pareto and Burr distributions. Saran and Pandey (2004, 2009) 

established recurrence  relations for single and product moments of generalized order statistics from linear-exponential 

and Burr distributions. Saran and Pandey (2011) obtained recurrence relations for marginal and joint moment generating 

functions of dual (lower) generalized order statistics from inverse Weibull distribution.  In this paper, we derive exact 

expressions for single and product moments of LGOS for a class of exponential distributions defined below in Section 3, 

and discuss its various particular cases. Also, we give the characterization of this class of distributions by considering the 

conditional moments of LGOS. The results so obtained are generalized versions of the corresponding results of Khan et 

al. (2012).  
 

3. Family of Exponential Distributions 
Consider a family of exponential distributions defined by the function 

( )(x)
F(x) 1 e , 0 and 0 x

η
−Ψ= − η > < < ∞

 ,                                   (3.1) 

where
(0) 0, ( )Ψ = Ψ ∞ = ∞

 and 
(x)Ψ

is monotonic in nature with inverse function 
1(x), i .e., .−φ ψ = φ

 The Table  

3.1 given below demonstrates a few standard distributions obtained from (3.1) by choosing appropriate value of the 

parameter 
η

 and the function 
(x)ψ

. 
 

Table 3.1 

S.No. Choice of parameter 
η

 and the function 
(x)ψ

 
Family of exponential 

distribution represents 

1 
x

1, (x) x, (x) 0 x and 0.η = ψ = λ φ = < < ∞ λ >
λ  

Exponential distribution 

2 

1

n
n x

1, (x) x , (x) 0 x and 0.
 

η = ψ = λ φ = < < ∞ λ > 
λ   

Weibull distribution 

3 
x

1, (x) x, (x) , x and 0.
− µ

η = ψ = µ + λ φ = µ < < ∞ λ >
λ  

Linear- exponential distribution 

4 ( )

1

x
(x) x , (x) ,0 x and , 0

η
η

ψ = λ φ = < < ∞ η λ >
λ  

Exponentiated Weibull distribution 

The mathematical form of the distribution, as given in (3.1), is very useful for deriving the exact expressions for the 

single and product moments of LGOS. 
 

Notations 

 For n =  1, 2, 3,...  , a > 0, b > 0, c > 0, 
{ }1 r s n , k 1 and u, v 0,1,2,...≤ < ≤ ≥ ∈

, we denote by 

(a) 

( ) ( ) ( ) ( )
au b

u m

0

H a,b x F(x) f x g F(x) dx

∞

= ∫
                        (3.2) 

(b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
x

ba cu v

u,v m m

0 0

H a,b,c x y F(x) f x h F(y) h F(x) F(y) f y dydx

∞

 = − ∫ ∫
               (3.3) 

(c) 
( ) ( )( )

u
u *

m, n, k
r E X  r,  n,  m,  k µ =

                    (3.4) 

(d) 
( ) ( )( ) ( )( )( )u v

u, v * *

m, n, k r,s E X  r,  n,  m,  k X  s,  n,  m,  k µ =
                 (3.5) 

(e) 
( ) ( )( )

u
u *

m, n , k r E X  r,  n,  m,  k µ =
�

�
                    (3.6) 

(f) 
( ) ( )( ) ( )( )( )u v

u, v * *

m, n , k r, s E X  r,  n,  m,  k X  s,  n,  m,  k µ =
�

� �

                 (3.7) 

4. The Main Lemma 
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In this section, we derive some results which will be useful later for establishing the main results. 

Lemma 4.1 For the class of distributions defined in (3.1) and non-negative finite integers i, j, a, b and c, 

(i) 

( )

( )
( )

( )

( )

b
d w

b
d 0 w 0

i
w

b 1
w 0

b i1
1 , m 1,

w idm 1 a (m 1)d 1

H a,b
i

b! , m 1,
w i

a 1

∞

= =

∞

+
=

 β 
− ≠ −   ++   + + + +

η
=  β = −
  +

+ +  η  

∑ ∑

∑

 

where 
( )w iβ

is the co-efficient of 
w it +

 in 

( )
i

w
s

w

w 0 s 1

0 t

w! s

∞ ∞

= =

 φ  
  
   
∑ ∑

 and 
1−φ = ψ
 as defined earlier. 

(ii) 

( )

( )
( )

( )

( )

( )

( )

( ) ( )

b
v w

b
v 0 w 0 w ' 0

w '

i , j

w w '

b 1 b 1
w 0 w ' 0

b i1
1

w w ' i jvm 1 a c b(m 1) 2

j
H a,b,c , m 1,

w ' j
(b v)(m 1) c 1

i j
b! , m 1.

w w ' i j w ' j
a c 2 a 1

∞ ∞

= = =

∞ ∞

+ +
= =




β  − ×  + + ++   + + + + +
η

 β
= × ≠ − + + − + + +

η


β β × = −
    + + + +

+ + + + +    η η    

∑ ∑ ∑

∑ ∑

 
 

Proof of (i) . 

Case 1. m 1≠ −  

Substituting   

( )
( )

( )
( ) ( )

b
m 1

b
d (m 1)db

m b
d 0

b1 F(x) 1
g F(x) 1 F(x)

dm 1 m 1

+

+

=

 −  
 = = −  + +   

∑
 in (3.2), we get 

( )
( )

( ) ( ) ( )
b

d a (m 1)di

i b
d 0 0

b1
H a,b 1 x F(x) f x dx

dm 1

∞
+ +

=

 
= − 

+  
∑ ∫

 .  

Putting 
( )

1

t F(x) η=
, we have 

( )
( )

( ) ( )
1b

d w i (a (m 1)d 1) 1

i wb
d 0 w 0 0

b
H a,b 1 i t dt

dm 1

∞
+ + + + + η−

= =

 η
= − β 

+  
∑ ∑ ∫

 

  
( )

( )
( )

( )

b
d w

b
d 0 w 0

b i
1

d w i a (m 1)d 1m 1

∞

= =

β η
= − 

+ + + + + η+  
∑ ∑

, 

which leads to the relation as stated in ( i ) for the case m 1≠ − . 

 

Case 2. m 1= −  

By using  repeatedly the combinatorial identity  [ Ruiz (1996) ] 

 

( )
b

d k

b
d 0

0, k 0,1,2,..., b 1,b
1 d

d ( 1) b!, k b,=

= − 
− =  

− =  
∑

                   (4.1) 

we get 
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( ) ( )
( )

( )

1
b

d

d 0

i w bm 1
w 0

b w i
1 a (m 1)d 1

d 0
H a, b lim i

0m 1

−

∞
=

→ −
=

   +
− × + + + +   η  = β →

+

∑
∑

 

            

( ) ( )
b 1

b
d b b

w

w 0 d 0

bw i
i a 1 1 d

d

− −
∞

+

= =

  +
= β + + × − ×  

η   
∑ ∑

  
( by using L-Hospital Rule),  

which again on using (4.1) for k = b leads to the relation as stated in (i) for the case m = -1. 
 

Proof of (ii) . 

Case 1. m 1≠ −  

From (3.3), we have, for b = 0, 

( ) ( ) ( ) ( ) ( )
x

a ci j

i , j

0 0

H a,0,c x y F(x) f x F(y) f y dy dx

∞

= ∫ ∫
 

( ) ( )
ai

0

x F(x) f x G(x)dx,

∞

= ∫
                                   (4.2) 

where               

( ) ( )
x

cj

0

G(x) y F(y) f y dy= ∫
.                     (4.3) 

Putting 
( )

1

t F(y) η=
 in (4.3), we have   

( )

( )

1

F( x)

j w ' c 1

w '

w ' 00

G(x) j t t dt

η ∞
+ η +η−

=

 
= η β 

 
∑∫

 

            

( )
( )

( )
( )

1 w ' j
c 1F(x)

w ' j (1 c) 1

w ' w '

w ' 0 w ' 00

F(x)
j t dt j

w ' j
c 1

η
+

+ +
∞ ∞ η

+ +η + −

= =

 
 

= η β = β  
+ + +

 η 

∑ ∑∫

, 

which on substituting in (4.2) gives 

      

( ) ( ) ( )
1

w w ' i j (a c 2) 1

i , j w w '

w 0 w ' 0 0

1
H a,0,c i j t dt

w ' j (c 1)

∞ ∞
+ + + +η + + −

= =

= β β
+ + + η

∑ ∑ ∫
 

( )
( )

( )
( )

w w '2

w 0 w ' 0

i j

w w ' i j a c 2 w ' j c 1

∞ ∞

= =

β β
= η ×

+ + + + + + η + + + η
∑ ∑

.                 (4.4) 

Further, on substituting the value of  

( ) ( )
( ) ( )

( )

b
m 1 m 1

b

m m

F(x) F(y)
h F(y) h F(x)

m 1

+ + −
 − =    +    

( )
( ) ( ) ( )

b
v v(m 1) (b v)(m 1)

b
v 0

b1
1 F(x) F(y)

vm 1

+ − +

=

 
= − 

+  
∑

  
 in (3.3), we get 

( )
( )

( )
b

v

i, j b
v 0

b1
H a, b,c 1

vm 1 =

 
= − 

+  
∑

 

( ) ( )( ) ( )
x

a v(m 1) (b v)(m 1) ci j

0 0

x y F(x) f x F(y) f y dydx

∞
+ + − + + 

×  
 
∫ ∫

 

( )
( ) ( )

b
v

i , jb
v 0

b1
1 H a v(m 1), 0 , (b v)(m 1) c

vm 1 =

 
= − + + − + + 

+  
∑

, 
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( using (4.2) ) 

which on using (4.4) leads to the relation as stated in (ii) for the case m 1≠ − . 
 

Case 2: m 1= − .  

The proof is similar to the one as used in case 2 of (i). 
  

5. Explicit Expressions For Single and Product Moments 

Case I: 1 2 n 1m m ... m m−= = = =
 

Theorem  5.1 For n =  1, 2, 3,... , 
{ }1 r s n , k 1 and u, v 0,1,2,...≤ < ≤ ≥ ∈

, 

(a) 

( ) ( )
r 1u

m, n, k u r

c
r H 1, r 1

(r 1)!

−
µ = γ − −

− ,                                   (5.1) 

(b) 

( )
( )

( )
r 1

ds 1u, v

m, n, k r 1
d 0

c r 1
r,s 1

d(r 1)! (s r 1)! m 1

−
−

−
=

− 
µ = − 

− − − +  
∑

 

( )u ,v sH m (m 1)d, s r 1, 1× + + − − γ −
,                     (5.2) 

where 
( )u rH 1, r 1γ − −

 and 
( )u ,v sH m (m 1)d, s r 1, 1+ + − − γ −

are as defined in Lemma 4.1. 

Proof of (a): On using (3.4) and (2.3), the u
th

  order moment of  
( )*X  r,n, m, k 

 is given by 

( ) ( ) ( )r 1r 1 uu r 1

m, n, k m

0

c
r x F(x) f ( x ) g F(x) dx

(r 1)!

∞
γ −− −µ =

− ∫
. 

By using (3.2), we shall derive the relation as stated in (5.1). 

Proof  of (b): On using (3.5) and (2.4), we have 

( ) ( )( ) ( )
x

ms 1 uu, v v r 1

m, n, k m

0 0

c
r,s x y F(x) f (x) g F(x)

(r 1)! (s r 1)!

∞
− −µ =

− − − ∫ ∫
 

( ) ( ) ( ) s
s r 1 1

m mh F(y) h F(x) F(y) f (y) dy dx
− − γ −

 × −  .                                (5.3) 

Substituting  

( )
( )

( )
( ) ( ) ( )

r 1
m 1

r 1
d m 1 dr 1

m r 1
d 0

r 11 F(x) 1
g F(x) 1 F(x)

dm 1 m 1

−+
−

+−

−
=

  −−  
 = = −  + +   

∑
      

in (5.3), we have  

( ) ( ) ( )
xr 1

d m (m 1)ds 1 uu, v v

m, n, k r 1
d 0 0 0

c r 1
r,s 1 x y F(x) f (x)

d(r 1)! (s r 1)! (m 1)

∞−
+ +−

−
=

− 
µ = − 

− − − +  
∑ ∫ ∫

 

     
( ) ( ) ( ) s

s r 1 1

m mh F(y) h F(x) F(y) f (y) dy dx
− − γ −

 × −  . 

The relation (5.2) follows immediately on using (3.3). 

Case II: i j ; i j, i, j 1, 2,..., n 1γ ≠ γ ≠ = −
  

Theorem 5.2  For n =  1, 2, 3,... , 
{ }1 r s n , k 1 and u, v 0,1,2,...≤ < ≤ ≥ ∈

, 

(a) 

( ) ( )
r

u

m, n, k r 1 i u i

i 1

r c a (r) H 1,0 ,−
=

µ = γ −∑�

                   (5.4) 

(b) 

( ) ( )
r s

u,v r

m,n,k s 1 i j i, j i j j

i 1 j r 1

r,s c a (r) a (s) H 1,0, 1 ,−
= = +

µ = γ − γ − γ −∑ ∑�

                (5.5) 

where 
( )u iH 1,0γ −

 and 
( )i , j i j jH 1,0, 1γ − γ − γ −

are as defined in Lemma 4.1 .  
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Proof of (a) : The u
th

  order moment of  
( )*X  r,n, m, k �

, on using (3.6) and (2.6), is given by 

( ) ( ) i

r
1uu

m, n, k r 1 i

i 1 0

r c a (r) x F(x) f (x)dx

∞
γ −

−
=

µ = ∑ ∫�

.  

After using (3.2), we shall derive the exact expression given in (5.4). 

Proof of (b): On employing (3.7) and (2.7), we get 

( )
jx s

u,v u v r

m,n,k s 1 j

j r 10 0

F(y)
r,s x y c a (s)

F(x)

γ∞

−
= +

    µ =   
    

∑∫ ∫� ( ) i

r

i

i 1

f (x) f (y)
a (r) F(x) dydx

F(x) F(y)

γ

=

  
 

    
∑

 

     =
( ) i j j

xr s
1 1r u v

s 1 i j

i 1 j r 1 0 0

c a (r) a (s) x y F(x) f (x) F (y) f (y) dydx

∞
γ −γ − γ −

−
= = +

∑ ∑ ∫ ∫
, 

which on using (3.3),  leads to the relation (5.5). 
 

6. Characterization 
Let X

*
(r, n, m, k), r = 1, 2,…,n be the LGOS from a continuous type of distribution with cumulative distribution function 

F(x) and probability density function f(x). Then, in view of (2.3) and (2.4), the conditional density function of  Y = X
*
(s, 

n, m, k) given X
*
(r, n, m, k) = x, 1 r s n≤ < ≤ , is  

s
s r 1

m 1 1

F(y) F(y) f (y)
f (y | x) 1 , 0 y x ,

F(x) F(x) F(x)

− −
+ γ −    

= σ − < < < ∞    
                         (6.1) 

where  

s 1

s r 1

r 1

c

(s r 1)! c (m 1)

−

− −

−

σ =
− − +

. 

Theorem 6.1 Let X be a non-negative, absolutely continuous type of random variable with distribution function F(x) 

satisfying the conditions F(0) = 0 and 0 < F(x) < 1. Then a necessary and sufficient condition for  

( )( ) ( )( ) ( )( )
s r

i w i r j* * (x)

w

w 0 j 1
r j

E X s, n,m, k | X r, n, m, k x i 1 e
w i

−∞
+ +−ψ

= =
+

 
 γ
 = = β −

+ + γ η 

∑ ∏

                (6.2) 

 is that  

( ) ( )(x)F x 1 e , x 0, 0
η−ψ= − > η >

,  

where 
(x)ψ

 is monotonic function satisfying 
o (x) xψ φ =

 for some function 
(x)φ

. 

Proof.   

Condition is sufficient. 
On using (6.1), we have  

( )( )
s

s r 1
m 1 1x

i * i

0

F(y) F(y) f (y)
E Y | X r, n, m,k x y 1 dy

F(x) F(x) F(x)

− −+ γ −    
 = = σ −         

∫
 

( ) ( ) ( )
s

w i1
1w i s r 1

(x) m 1

w

w 0 0

i 1 e u 1 u du

+∞ +γ −+ − −−ψ +η

=

= σ β − −∑ ∫
, where 

F(y)
u

F(x)
=

  

( ) ( )
w i

(x) s
w

w 0

w i
i 1 e B ,s r

(m 1) m 1

∞
+−ψ

=

 γ+
= σ β − + − 

η + + 
∑

 
( )m 1By putting u v+ =

 

( )( )
1

s r
w i

(x )s 1
w r j

w 0 j 1r 1

c w i
i 1 e

c

−
−∞

+−ψ−
+

= =−

 +
= β − + γ 

η 
∑ ∏

 ,  

which, on substituting the value of  

s 1

r 1

c

c

−

− , leads to (6.2). 

Condition is necessary 
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Let 

 

( ) ( )
s r

w i r j(x)

r w

w 0 j 1
r j

Z (x) i 1 e
w i

−∞
+ +−ψ

= =
+

 
 γ
 = β −

+ + γ η 

∑ ∏

.                   (6.3) 

Then it implies that  

( ) ( )
s r

w i r j(x)

r 1 r w

w 0 j 1r 1
r j

1
Z (x) Z (x) i (w i) 1 e

w i

−∞
+ +−ψ

+
= =+

+

 
 γ
 − = β + −

+ηγ  + γ η 

∑ ∏

.                 (6.4) 

Differentiating both sides of (6.3) with respect to x, we have 

( ) ( )
(x) s r

w i r j/ (x )

r w(x)
w 0 j 1

r j

e '(x)
Z (x) i (w i) 1 e

w i1 e

−ψ −∞
+ +−ψ

−ψ
= =

+

 
 γψ
 = β + −

+−  + γ η 

∑ ∏

.                 (6.5) 

Using (6.4) and (6.5), we get 

( )
(x)

/

r r 1 r 1 r (x)

e '(x)
Z (x) Z (x) Z (x)

1 e

−ψ

+ + −ψ

η ψ
= γ −

−  .                   (6.6) 

Also from (6.2), we have 

( ) ( )( ) ( ) s

x
s r 1

m 1 m 1 1is 1

r 1 0

c
y F(x) F(y) F(y) f (y)dy

c

− −+ + γ −−

−

−∫
 

( ) r 1s r 1

r
(s r 1)!(m 1) F(x) Z (x)+γ− −= − − +

.                    (6.7) 

Differentiating both sides with respect to x, we get 

( ) ( )( ) ( ) s

x
s r 2

m 1 m 1 1is 1

r 1 0

c
y F(x) (x) F(y) F(y) f (y)dy

c

− −+ + γ −−

−

 
− 

 
∫

 

( ) r 1 (m 1)s r 2(s r 2)! (m 1) F(x)

f (x)

+γ − +− −− − +
=

( )/

r 1 r r
f (x)Z (x) F(x) Z (x)+γ +

.                  (6.8) 

On substituting the value of the expression appearing in the rectangular brackets on the L.H.S. of (6.8) from (6.7) by 

replacing therein r  by r +1, we get  

( ) r 2s r 2s 1 r
r 1

r 1 s 1

c c
(s r 2)! (m 1) F(x) Z (x)

c c

+γ− −−
+

− −

 
− − + 

   

( ) r 2s r 2(s r 2)! (m 1) F(x) +γ− −= − − +
/

r 1 r r

F(x)
Z (x) Z (x)

f (x)
+

 
γ + 
  , 

which on simplification yields  

 
( ) /

r 1 r 1 r r

F(x)
Z (x) Z (x) Z (x)

f (x)
+ +γ − =

. 

Then, on using (6.6), we get  
(x)

(x)

f (x) e '(x)

F(x) 1 e

−ψ

−ψ

η ψ
=

−  

( ) ( )(x )
F x 1 e , x 0, 0.

η−ψ⇒ = − > η >
  

Hence the result. 

Remark 

In Theorem 5.1, if we put 
( )

1

x
(x) x , (x) where 0 x and , 0

η
η

ψ = λ φ = < < ∞ η λ >
λ ,  we verify the results obtained by 

Khan et al. (2012) for exponentiated Weibull distribution. 
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