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Abstract: Reflection and transmission phenomenon at a loosely 

bonded interface between two different fluid saturated porous half 

spaces is studied in the present investigation. P-wave or SV-wave 

incidents on the interface. The amplitude ratios for various 

reflected and transmitted waves to that of incident wave are 

obtained. After finding the amplitude ratios, they have been 

computed numerically for a specific model and plotted for different 

degree of bonding parameter. It is found that these amplitude ratios 

depend on angle of incidence of the incident wave and material 

properties of the considered medium and also these are affected by 

the bonding parameter. Also a special case is obtained and 

discussed from the present study accordingly.  

Keywords: Porous solid, reflection, transmission, longitudinal 

wave, transverse wave, amplitude ratios, empty porous solid.  
 

Introduction 
Elastic waves propagation in fluid saturated porous 

medium has been studied for a long time due to its 

importance in various fields such as soil dynamics, 

hydrology, seismology, earthquake engineering and 

geophysics. Layers of porous solids, such as sandstone or 

limestone, saturated with oil or groundwater are often 

present in the earth’s crust. They are of great interest in 

geophysical exploration. Therefore the study of 

incompressible fluid saturated poroelastic solid in contact 

with another incompressible fluid saturated poroelastic 

solid is of great interest. Due to the different motions of 

the solid and liquid phases and different material 

properties and the complicated structures of pores, the 

mechanical behaviour of a fluid saturated porous medium 

is very complex. So many researchers tried to overcome 

this difficulty from time to time. Bowen (1980) and de 

Boer and Ehlers (1990a, 1990b) developed a theory for 

incompressible fluid saturated porous medium based on 

the work of Fillunger model (1913). For example, in the 

composition of soil both the solid constituents and liquid 

constituents are incompressible. Based on this theory, 

many researchers like de Boer and Liu(1994,1995), 

Kumar and Hundal (2003),de Boer and Didwania (2004), 

Tajuddin and Hussaini (2006),Kumar et.al.(2011) etc. 

studied some problems of wave propagation in fluid 

saturated porous media. In the problems of wave 

propagation at the interface between two elastic half 

spaces, the contact between them is normally assumed to 

be welded. However, in certain situations, there are 

reasons for expecting that bonding is not complete. Murty 

in 1975 discussed a theoretical model for reflection, 

transmission, and attenuation of elastic waves through a 

loosely bonded interface between two elastic solid half 

spaces by assuming that the interface behaves like a 

dislocation which preserves the continuity of stresses 

allowing a finite amount of slip. A similar situation 

occurs at the two different poroelastic solids, as the liquid 

present in the porous skeleton may cause the two media 

to be loosely bonded. Vashisth and Gogna (1993), Kumar 

and Miglani (1996), Kumar and Singh (1997) etc. 

discussed the problems of reflection and transmission at 

the loosely bonded interface between two half spaces. 

Using de Boer and Ehlers (1990) theory for fluid 

saturated porous medium, the reflection and transmission 

of longitudinal wave (P-wave) or transverse wave (SV-

wave) at a loosely bonded interface between two different 

fluid saturated porous half spaces is investigated. A 

special case when fluid saturated porous half spaces 

reduce to empty porous solid half spaces has been 

deduced and discussed accordingly. Amplitudes ratios for 

various reflected and transmitted waves are computed for 

a particular model and depicted graphically.  

 

Basic equations  
In 1990, de Boer and Ehlers described the governing equations for the deformation of an incompressible porous medium 

saturated with non-viscous fluid in the absence of body forces as 

  ∇. �η��� � + η	�� 	
 = 0, �1
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 �λ� + µ��∇�∇. ��
 + µ�∇��� − η�∇p − ρ��� � + S���� 	 − �� �
 = 0, �2
  η	∇p + ρ	�� 	 + S���� 	 − �� �
 = 0, �3
  ��� = 2µ��� + λ��E�. �
�, �4
  �� = 12 �grad �� + grad#��
, �5
 

where �%, �� %, �� %, i = F, S denote the displacement, velocity and acceleration of fluid and solid phases, respectively and p is 

the effective pore pressure of the incompressible pore fluid. ρ� and ρ	are the densities of the solid and fluid constituents, 

respectively. ��� is the effective stress in the solid phase and �� is the linearized langrangian strain tensor. λ
�
 and µ� are 

the macroscopic Lame’s parameters of the porous solid and η� and η	 are the volume fractions satisfying 

  η� + η	 = 1. �6
 
In the case of isotropic permeability, to describe the coupled interaction between the solid and fluid, de Boer and Ehlers 

(1990) gave the tensor �� as 

 �� = �η	
�γ	)K �, �7
 

where γ	) is the specific weight of the fluid and K is the Darcy’s permeability coefficient of the porous medium and I 

stands for unit vector.  

The displacement vector �% �i = F, S
 can be assumed as   �% = �u%, 0, w%�, where i = F, S, �8
  

and therefore equations (1)- (3) describing the equations of motion for fluid saturated incompressible porous medium in 

the component form can be written as  
 

 �λ� + µ�� ∂θ�
∂x + µ�∇�u� − η� ∂p∂x − ρ� ∂�u�∂t� + S� 2∂u	∂t − ∂u�∂t 3 = 0, �9
 

 �λ� + µ�� ∂θ�
∂z + µ�∇�w� − η� ∂p∂z − ρ� ∂�w�∂t� + S� 2∂w	∂t − ∂w�∂t 3 = 0, �10
 

 η	 ∂p∂x + ρ	 ∂�u	∂t� + S� 2∂u	∂t − ∂u�∂t 3 = 0, �11
 

 η	 ∂p∂z + ρ	 ∂�w	∂t� + S� 2∂w	∂t − ∂w�∂t 3 = 0, �12
 

 η� 6789:
7; 7< + 78=:

7> 7< ? + η	 6789@
7; 7< + 78=@

7> 7< ? = 0, �13
  

where  

 θ� = ∂�u�
∂x + ∂�w�
∂z . �14
 

and 

 ∇�= ∂�∂x� + ∂�∂z� . �15
 
 

With the help of Helmholtz decomposition of displacement vector, the displacement components u% and w% are related to 

the potential functions ϕ% and ψ% as given below  

 u% = ∂ϕ%∂x + ∂ψ%∂z , w% = ∂ϕ%∂z − ∂ψ%∂x , i = F, S. �16
 

Using, (16) in eqs. (9)- (13), we obtain the following equations: 

 ∇�ϕ� − 1C� ∂�ϕ�∂t� − S��λ� + 2µ���η	
� ∂ϕ�∂t = 0, �17
 

 ϕ	 = − η�
η	 ϕ�, �18
 

 µ�∇�ψ� − ρ� ∂�ψ�∂t� + S� 2∂ψ	∂t − ∂ψ�∂t 3 = 0, �19
 



International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 9, Issue 3, 2014 pp 108-114 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 9 Issue 3                                                  Page 110 

 ρ	 ∂�ψ	∂t� + S� 2∂ψ	∂t − ∂ψ�∂t 3 = 0, �20
 

 �η	
�p − η�ρ	 ∂�ϕ�∂t� − S� ∂ϕ�∂t = 0, �21
 

where 

 C = C �η@
8�λ:D�µ:��η@
8ρ:D�η:
8ρ@ . �22
  
 

The normal and tangential stresses in the solid phase take the form, 

 t>>� = λ� E∂�ϕ�∂x� + ∂�ϕ�∂z� F + 2µ� E∂�ϕ�∂z� − ∂�ψ�∂x ∂zF , �23
 

 t>;� = µ� E2 ∂�ϕ�∂x ∂z + ∂�ψ�∂z� − ∂�ψ�∂x� F . �24
 

 

Taking the time harmonic solution of the system of equations (17) - (21) as  �ϕ�, ϕ	,ψ�,ψ	, p
 = �ϕG�, ϕG	,ψG�,ψG	, pG� exp�iωt
 , �25
  

where ω is the complex circular frequency. 

Using equation (25) in equations (17)-(21), we get 

 2∇� + ω�C� − iωS��λ� + 2µ���η	
�3 ϕG� = 0, �26
 

 Iµ�∇� + ρ�ω� − iωS�JψG� = −iωS�ψG	, �27
  I−ω�ρ	 + iωS�JψG	 − iωS�ψG� = 0, �28
  �η	
�pG + η�ρ	ω�ϕG� − iωS�ϕG� = 0, �29
 

 ϕG	 = − η�
η	 ϕG�. �30
 

 

Equation (26) represents the propagation of a longitudinal wave with velocity VG, where 

  VG� = GLM , �31
 

and  GG = O GP8 − %�Q
ω�λ:D�µ:��η@
8R . �32
 

Using equations (27) and (28), we get 

 2∇� + ω�
V��3ψG� = 0. �33
 

Equation (33) describes the propagation of transverse wave with velocity V�, which is given by 

 V�� = GL8, 
where 

  G� = Sρ:
µ: − %�Q

µ:ω − �Q8
µ:�Tρ:ω8D%ω�Q
U , �34
 

 

Formulation of the Problem and its Solution.  
Consider a fluid saturated porous half space medium M� Iz < 0J lying over another fluid saturated porous medium MG Iz > 0J (see figure1).The interface between two half spaces is considered an imperfect boundary and taking the z-

axis pointing into lower half-space. A longitudinal wave (P-wave) or transverse wave (SV-wave) propagating through 

the medium MG and incident at the plane z=0 and making an angle θY with normal to the surface. Corresponding to each 

incident wave (P-wave or SV-wave), we get two reflected waves P-wave and SV-wave in the medium MG and two 

transmitted waves P-wave and SV-wave in medium M�. The Geometry of the problem conforms the two dimensional 

problem.  
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Figure1: Geometry of the problem 

 

In medium Z[  

The potential functions satisfying the equations (17)-(21) can be taken as   \ϕ�, ϕ	, p] = \1, mG, m�]IAYG exp\ikG�x sinθY– z cosθY
 + iωGt]  + AGexp\ikG�x sinθG + z cosθG
 + iωGt]J, �35
  \ψ� ,ψ	] = \1, mf]IBYG exp\ik��x sinθY– z cosθY
 + iω�t] + BGexp\ik��x sinθ� + z cosθ�
 + iω�t]J, �36
 

where 

 mG = − η�
η	 , m� = − 2η�ωG�ρ	 − iωGS��η	
� 3 , mf = iω�S�iω�S� − ω��

ρ	 , �37
 

and AYG  and BYG  are amplitudes of the incident P-wave and SV-wave, respectively. AG  ,  BG  are amplitudes of the 

reflected P-wave and SV-wave respectively.  
 

In medium Zh 

The potential functions satisfying the equations (17)-(21) can be taken as follow  Sϕ�, ϕ	, pU = \1, mG, m�]i AGexpjikG�x sinθG + z cosθG� + iωGtkl, �38
  jψ� ,ψ	k = \1, mf]iBGexpjik��x sinθ� + z cosθ�� + iω�tkl, �39
 

where  kmG  and km�  are wave numbers of transmitted P-wave and SV-wave, respectively. AnG and BnG  are amplitudes of 

transmitted P-wave and transmitted SV-wave.  
and  

 mG = − η�
η

	 , m� = − oη�
ωG�
ρ

	 − iωGS��η	�� p , mf = iω�S�iω�S� − ω��
ρ

	 , �40
 

 

Boundary Conditions 
The appropriate boundary conditions at the interface z=0 are the continuity of displacement and stresses. These boundary 

conditions can be expressed in the mathematical form as:  t>>� − p = t>>� − p, t>;� = t>;�,   w� = w�, t>;� = K<qu� − u�r, �41
 

where K< = ikµτ and τ = γ/�1 − γ
sinθY (42) 

γ is bonding constant. 0 ≤ γ ≤ 1. γ = 0 corresponds to smooth surface and γ = 1 corresponds to a welded interface  

In order to satisfy the boundary conditions, the extension of the Snell’s law gives  

 sinθYVY = sinθGVG = sinθ�V� = sinθmGVG = sinθm�V� , �43
 

Also  kGVG = k�V� = kmGVG = km�V� = ω, at u = 0, �44
 

where VG and V� are the velocities of the transmitted P-wave and transmitted SV –wave respectively and can be obtained 

in the similar way as VG and V� are obtained. 

 

For P-wave,  VY = VG, θY = θG, �45
 

For SV-wave,  VY = V�, θY = θ�, �46
 

For incident longitudinal wave at the interface z=0, putting BYG = 0 in equation (36) and for incident transverse wave 

putting AYG = 0 in equation (35). Substituting the expressions of potentials given by (35)-(36) and(38)-(39) in equations 

(16),(23)-(24) and the use of equations (41)-(46), gives a system of four non homogeneous which can be written as  
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 v a%w
x

wyY Zw = Y%, �i = 1,2,3,4
 �47
 

where 

 ZG = AGA∗  , Z� = A�A∗  , Zf = AnGA∗  , Zx = BnGA∗  �48
 

Also  a%w in non dimensional form can be written as  

 aGG = λ
�
µ� + 2cos�θG + m�

µ�kG� , aG� = −2sinθ�cosθ� k��
kG� ,  aGfy −kmG�

kG�
µ� }λ� + 2µ�cos�θmG + m�kG�~,  

 aGx = − µ�km��
kG�
µ� sin2θm� ,  a�G = 2sinθGcosθG ,  a��  = k��

kG� �cos�θ� − sin�θ�
, a�f = µ�kmG�
kG�
µ� sin2θmG ,  

 a�x = − µ�km��
kG�
µ� cos2θm� ,  afG = K< i sinθG,  af� = K< i k�cosθ�kG ,  aff = − K< i kmGkG sinθmG − µ�kmG�sin2θmG  kG   

 afx = K< i km�cosθm�kG + µ�km��cos2θm� kG , axG = i cosθG , ax� = − i k�sinθ�kG , 
 axf = i kn GcosθmGkG ,  axx = i km�sinθm�kG , �49
 

For incident longitudinal wave (P-wave)   A∗ = AYG,  YG = −aGG,  Y� = a�G, Yf = −afG, Yx = axG, �50
 

For incident transverse wave:  A∗ = BYG, YG = aG�,  Y� = −a��,  Yf = af�, Yx = −ax�, �51
 
 

Special case: 

If pores are absent or gas is filled in the pores then ρF is very small as compared to ρS and can be neglected, so the 

relation (22) gives us  

 C = �λS + 2µS

ρS
. �52
 

and the coefficients a11, a13 and a43 in (49) changes to  

 a11 = λ
S

µS
+ 2cos2θ1,  a13y −km1

2

k1
2
µS

6λS + 2µ
S
cos2θm1? , �53
 

and the remaining coefficients in (49) remain same. In this situation the problem reduces to the problem of empty porous 

solid half space over empty porous solid half space.  
 

Numerical results and discussion 

In medium M1, the physical parameters for fluid saturated incompressible porous medium are taken from de Boer, Ehlers 

and Liu (1993) as  ηs = 0.67, ηF = 0.33, ρs = 1.34 Mg/m3, ρF = 0.33 Mg/m3, λs = 5.5833 MN/m2,   KF = 0.01m/s, γFR = 10.00KN/m3,µs = 8.3750N/m2,ω∗ = 10/s, (54) 

In medium M2, the physical parameters are  ηs = 0.6, ηF = 0.4, ρs = 2.0 Mg/m3,ρF = 0.01 Mg/m3, λs = 4.2368 MN/m2,   KF = 0.02 m/s, γFR = 9.00 KN/m3,µs = 3.3272N/m2,ω∗ = 10/s, (55) 

Using MATLAB, a computer programme has been developed and modulus of amplitude ratios |��|, �� = 1,2,3,4, 
 for 

various reflected and transmitted waves have been computed. |�G| and |��| represent the modulus of amplitude ratios for 

reflected P and reflected SV-wave respectively. Also, |�f| and |�x| represent the modulus of amplitude ratios for 

transmitted P and transmitted SV-wave respectively.] 
 

Incident P-wave 
Figures (2)-(5) show the variations of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted P-wave 

and transmitted SV-wave with angle of incidence of incident P-wave in general case of fluid saturated half spaces. The 
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behaviour of all these distribution curves for reflected P-wave and for transmitted P-wave is similar i.e. they oscillate. 

For reflected SV–wave and transmitted SV-wave, the behaviour of all curves is also same i.e. increasing from normal 

incidence to maximum value and then decreasing from maximum value to grazing incidence. Figures (6)-(9) show the 

variations of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted P-wave and transmitted SV-wave 

with angle of incidence of incident P-wave in special case of empty porous solid half spaces. The effect of fluid filled in 

the pores of fluid saturated porous medium is clear by comparing the maximum values of corresponding amplitude ratio 

in figures (2)-(5) and (6)-(9). Also in these figures, the values corresponding to bonding parameter γ = 0, i.e., for smooth 

interface are large in comparison to other interface parameters. 
 

Incident SV-wave 

Figures (10)-(13) show the variations of the amplitude ratios for reflected P-wave, reflected SV-wave, transmitted P-

wave and transmitted SV-wave with angle of incidence of the incident SV-wave whereas figures (14)-(17) represent the 

case of empty porous solid. The behaviour of all these curves in figures (6)-(9) and (14)-(17) is same i.e. they oscillates. 

In all the figures (10)-(17), the amplitude ratios for the bonding parameter γ = 0.25 are maximum. The effect of fluid 

filled in the pores of fluid saturated porous medium is clear by comparing the maximum values of corresponding 

amplitude ratio in figures (10)-(13) and (14)-(17). 
 

 
 

 

Figure 2-5: Variation of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted P-wave and transmitted SV-wave with 

angle of incidence of P-wave. 

 
 

Figure 6-9: Variation of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted P-wave and transmitted SV-wave with 

angle of incidence of P-wave in case of empty porous solids. 

 
 

Figure 10-13: Variation of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted P-wave and transmitted SV-wave with 

angle of incidence of SV-wave. 
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Figure 14-17: Variation of the amplitude ratios of reflected P-wave reflected SV-wave, transmitted P-wave and transmitted SV-wave with 

angle of incidence of P-wave in case of empty porous solids. 
 

 Conclusion 
Numerical calculations are presented in detail for P-wave 

and SV-wave incident at the loosely bonded interface of 

considered model. For both the cases of incidence, it is 

observed the amplitudes ratios of various reflected and 

transmitted waves depend on the angle of incidence of the 

incident wave and material properties. The effect of fluid 

filled in the pores of incompressible fluid saturated 

porous medium is significant on amplitudes ratios. Effect 

of bonding parameter is significant on amplitude ratios. 

The research work is supposed to be useful in further 

studies; both theoretical and observational of wave 

propagation in more realistic models of fluid saturated 

porous solid present in the earth’s interior.  
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