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Abstract: In this paper, the estimation problem of generalized 

Rayleigh distribution is considered. The parameters are estimated 

using likelihood based inferential procedure: classical as well as 

Bayesian. We have computed MLEs and Bayes estimates under 

gamma priors along with their asymptotic confidence, bootstrap 

and HPD intervals. The Bayesian estimates of the parameters of 

generalized Rayleigh distribution are obtained using Markov chain 

Monte Carlo (MCMC) simulation method. We have obtained the 

probability intervals for parameters, hazard and reliability 

functions. The posterior predictive check method has been applied 

for evaluating the model fit. We have also discussed the Bayesian 

estimation and prediction for Type-II censored data. All the 

computations are performed in OpenBUGS and R software.  A real 

data set is analyzed for illustration of the proposed inferential 

procedures. 
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1.  Introduction 
  The Rayleigh distribution is a special case of the 

Weibull distribution, which provides a population model 

useful in several areas of statistics, including life testing 

and reliability which age with time as its failure rate is a 

linear function of time. Rayleigh has a linearly increasing 

failure rate which makes it a suitable model for the 

lifetime of components that age rapidly with time. 

 In recent years, new classes of models have been 

proposed based on modifications of the existing model. 

Several exponentiated distributions have been studied 

quite extensively, since the work of Mudholkar and 

Srivastava (1993) on exponentiated Weibull distribution. 

The exponentiated form of exponential distribution has 

been introduced by Gupta and Kundu (1999) and named 

it as generalized exponential distribution. Along the same 

line of the generalized exponential distribution Surles and 

Padgett (2005) introduced two-parameter Burr Type X 

distribution and named as the generalized Rayleigh 

distribution, Kundu and Raqab (2005). Nadarajah and 

Kotz (2006) proposed several exponentiated type 

distributions extending the Frchet, gamma, Gumbel and 

Weibull distributions. The two-parameter generalized 

Rayleigh distribution is a member of the generalized 

Weibull distribution, originally proposed by Mudholkar 

and Srivastava (1993). Kundu and Raqab (2005) and 

Raqab and Kundu (2006) have discussed the different 

methods of estimation of the parameters and other 

properties of generalized Rayleigh distribution. Raqab 

and Madi (2009) studied exponentiated Rayleigh 

distribution in Bayesian framework. In fact, there exist a 

lot of density functions which may be considered as 

generalizations of the Rayleigh distribution. 

 Recently, two versions of generalized Rayleigh 

distribution (GRD) are appeared in literature Voda (2007, 

2009). The probability density function of first one has 

the following form : 
1 22 12
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( 1)

x
f x x e x

α
α λλ

α λ
α

+
+ −= >

Γ +
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0, 0λ α> ≥ . With 0=α  we obtain the usual Rayleigh 

probability density function (pdf). 

 Initially, this family has been proposed by Voda 

(1976a, 1976b). We shall name it as the generalized 

Rayleigh distribution and is denoted by ( ,  )GRD α λ .  The 

two-parameter generalized Rayleigh distribution provides 

a rich family of specific distributions that have 

widespread application in many disciplines. Members of 

this family include the Rayleigh distribution itself, the 

Half-Normal distribution, the Maxwell distribution, and 

the Chi-distribution. 

 The main objective of this paper is to explore the 

inferential procedures, classical as well as Bayesian, for 

the generalized Rayleigh distributions. 

 The Rayleigh distribution itself has had many 

applications in life testing. Clearly, the GRD family is 

quite broad and lends itself to widespread application. In 

the case of reliability modeling, the GRD family is more 

flexible than the widely used Weibull model, as the latter 

includes only the Rayleigh distribution as a special case, 

while the GRD also encompasses the Maxwell and Chi-

distributions. In addition, other members of the GRD 

family, such as the Half-Normal distribution, are quite 

widely applied in the social sciences and elsewhere.  
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 It is to be noted that most of the cited literature is 

confined to classical developments and any systematic 

development on Bayesian results are rarely seen for the 

generalized Rayleigh distribution. The Bayesian methods 

are equally well applicable for small sample sizes and 

censored data problems; the two common features in 

reliability data analyses. 

 The advent of Markov chain Monte Carlo(MCMC) 

sampling has flourished Bayesian statistics. The freely 

available software package known as Bayesian inference 

using Gibbs sampling(BUGS) has been in the forefront of 

this proliferation since the mid-1990s. However, more 

recent advances in this software, leading first to 

WinBUGS and now to an open-source version 

OpenBUGS, Thomas et al. (2006), Thomas (2010) and 

Lunn et al. (2013), including interfaces to the open-source 

statistical package R, (R Development Core Team, 2013), 

have brought MCMC to a wider audience. We shall use 

OpenBUGS and R software in our present study. 

 For Bayesian analysis, we also need to assume a prior 

distribution for the model parameters.. In this paper, 

Bayesian analysis has been preformed under different loss 

function assuming independent priors for the parameters. 

 A major difficulty towards the implementation of 

Bayesian procedure is that of obtaining the posterior 

distribution. The process often requires the integration, 

which is very difficult to calculate not only for high-

dimensional complex models even if dealing with low-

dimensional models. In such a situation, Markov chain 

Monte Carlo (MCMC) methods are very useful to 

simulate the deviates from the posterior density and 

produce the good approximate results. 

 The rest of the paper is organized as follows. The 

generalized Rayleigh distribution and its properties are 

discussed in Section 2. The point estimation procedures 

for the parameters of the considered model under 

classical set-up and the confidence/bootstrap intervals 

have been constructed in Section 3. In Section 4, we have 

developed the Bayesian estimation procedure under 

independent gamma priors for the parameters. To check 

the applicability of the proposed methodologies, a real 

data set has been analysed in Section 5. In this section, 

the ML estimators of the parameters, approximate 

confidence intervals are presented. We cover Bayesian 

analysis using the MCMC simulation in Section 6. In this 

section, the Bayes estimates and credible intervals of 

parameters, hazard and reliability functions are presented.  

In Section 7 we have applied the predictive check method 

in order to give an assessment of the performance of the 

model for the given data. We have addressed the censored 

data problem in Section 8. Finally, the conclusions have 

been given in Section 9.  

 

2. The model   
The cumulative distribution function(cdf) of generalized 

Rayleigh distribution (GRD), corresponding to pdf given 

in (1),  is given by  

 
2 1 22 1
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where 0>α and 0>λ are the parameters.   

 Define incomplete gamma function as 

1
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 then we can write 
2

( ; , ) ( 1, )F x x= Γ +α λ α λ  (4) 

This family includes several important probability 

distributions as special cases.  

• For example, if 0α = and 2
1λ θ=  we obtain the 

one-parameter Rayleigh distribution with density 

function 
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• For 1/ 2=α  and 2
1=λ θ  we obtain the one-

parameter Maxwell distribution with the density 

function 
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• For ( )( / 2) 1a= −α  and 2
1 2=λ τ  we obtain the Chi- 

distribution with ‘a’ degrees of freedom, whose 

density function is 
2

1

( /2) 1 2

1
( ; , ) exp ; 0,

2 ( / 2) 2

a

a a

x
f x a x x

a
τ

τ τ

−
−
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 Γ  
  

 where , 0a N τ∈ > and N denotes the set of natural 

numbers. 

  

 The reliability/survival function is 

  ( ; , ) 1 ( ; , ) ; 0R x F x xα λ α λ= − >  (4) 

 The hazard rate function is 

  
( ; , , )

( ) ; 0.
1 ( ; , , )

f x
h x x

F x

α β λ

α β λ
= >

−
  (5) 

 The quantile function is given by 

( ; , )F x p=α λ    or 
1
( ; , )px F p

−= α λ  (6) 

 The random deviate can be generated from ( , )GRD α λ

by 

       ( ; , )F x u=α λ    1
( )x F u

−=  (7) 

where u has the (0, 1)U distribution. 
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The th
k  moment of ( ,  )GRD α λ  is given by 

( )( ) 1' ( /2)1
1 1 .

2

k
k kµ α α λ
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= Γ + + Γ + 
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Therefore, 

( )( ) 1 (1/2)3
( ) 1 .

2
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The GRD distribution is unimodal and asymmetric. The 

mode is ( )0.5
(2 1) / 2 .α λ+  

   

3.  Maximum likelihood estimation (MLE)  
 The nice properties, such as consistency, asymptotic 

unbiased, asymptotic efficiency, and asymptotic 

normality, make the maximum likelihood estimation most 

popular and attractive one. In this section, we discuss the 

maximum likelihood estimators (MLE’s) of the 

( , )GRD α λ distribution and discuss their asymptotic 

properties to obtain approximate confidence intervals 

based on MLE’s. 

 Let 1( , , )nx x x= …  be a sample of size n from 

( , )GRD α λ , then the log-likelihood function ( , | )xα λ�  

can be written as;   

( ) ( )

2

1 1

, | log 2 1 log log ( 1)

(2 1) log
n n

i i
i i

x n n n

x x
= =

= + + − Γ +

+ + −∑ ∑

� α λ α λ α

α λ
     (8)   

 To obtain the MLE’s of α  and λ , we can maximize 

(8) directly with respect to α  and λ  or we can solve the 

following system of non-linear equations.  
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 where  
' ( )

( )
( )

Γ
Ψ =

Γ

α
α

α
 is the digamma function. 

 Note that the MLEs, respectively α̂ and λ̂ of α and λ
cannot be solved analytically. Numerical iteration 

techniques, such as the Newton-Raphson algorithm, are 

thus adopted to solve these equations. 

 

3.1 Approximate confidence intervals 
The exact distribution of MLEs cannot be obtained 

explicitly. Therefore, the asymptotic properties of MLEs 

can be used to construct the confidence intervals for the 

parameters, Lawless(2003). The asymptotic inference for 

the parameter vector ( , )=θ α λ  can be based on the 

normal approximation of ˆ ˆˆ( , )=θ α λ . Under some regular 

conditions, we have ( ) ( )1
2

ˆ ~ 0, ( )nn N Iθ θ θ −− , for n 

large, and ( )nI θ  is the per observation expected 

information matrix. The asymptotic behavior remains 

valid if 
1

( ) ( )n n
n

I lim n J
−

→∞
=θ θ , where ( )nJ θ  is the 

observed information matrix, is replaced by the average 

sample information matrix evaluated at θ̂ , i.e. 1 ˆ( )nn J
− θ . 

We have 
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whose elements are 
2
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2

2 2

( 1)n∂ +
= −

∂
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λ λ
  and  

2
n∂

=
∂ ∂

�

λ α λ
. 

We can use the normal approximation of the maximum 

likelihood estimator of θ  for constructing approximate 

confidence intervals as well as for testing hypotheses on 

the model parameters. For example, asymptotic 

confidence intervals for ( , )=θ α λ are given, respectively, 

by /2ˆ ˆ( )z SE± γα α  and /2
ˆ ˆ( )z SE± γλ λ , where ( )SE ⋅  is 

the square root of the diagonal element of 1ˆ( )nJ
−θ

corresponding to each parameter, and /2zγ  is the quantile 

100(1 ( / 2))%− γ of the standard normal distribution. 

 

3.2 Bootstrap confidence intervals 

  In this section we propose the confidence intervals 

based on the bootstrapping. Bootstrap methods are widely 

used to improve estimators or to build confidence 

intervals for the parameters. We have used the percentile 

bootstrap (Boot-p) method, proposed by Efron and 

Tibshirani (1986), to construct confidence intervals for 

the parameters as well as the reliability and hazard 

functions. To construct the ‘Boot-p’ confidence interval, 

we proceed as follows, Soliman et al.(2012): 

Step 1. From the original data ( )1, , nx x x= …  compute the 

ML estimates α̂ and λ̂ of the parameters: α and 

λ  by solving the nonlinear equations (9).  

Step 2. Generate a bootstrap sample ( )* *

1
, ,

n
x x x

∗ = …  of 

size n from (1) using α̂ and λ̂ . As in Step 1, 

compute the estimates of α and λ  say *α̂ and 
*λ̂ , using bootstrap sample.  
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Step 3. Repeat Step 2, K -times. Obtain the bootstrap 

estimates ( )* *
1ˆ ˆ, , Kα α… and ( )* *

1
ˆ ˆ, , Kλ λ… .  

Step 4. Let ( )* *
(1) ( )ˆ ˆ, , Kα α… be the ordered values of the 

estimates ( )* *
1ˆ ˆ, , Kα α… . The ( )100 1 %γ−

 
two-

sided boot-p confidence interval (BCI) for α can 

be obtained by ( )* *
([ /2]) ([ (1 /2)])ˆ ˆ,K Kγ γα α − , where 

[ ]χ denotes the largest integer less than or equal 

to χ . Similarly, we can obtain the ( )100 1 %γ−

BCI for λ . 

 

4.  Bayesian model formulation 
 The Bayesian model is constructed by specifying the 

prior distributions for the model parametersα  and λ , and 

then multiplying with the likelihood function ( ), |L xα λ  

for the given data 1( , , )nx x x= …  to obtain the posterior 

distribution function using Bayes theorem.  The 

likelihood function is given by  

 ( )
( )

( 1)
2 1 2

11

2
, | exp

( 1)
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n n n n

in
ii

L x x x
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+

==
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α

Denote the prior distribution of α and λ  as ( , )p α λ . The 

joint posterior is 

  ( , | ) ( , | ) ( , )p x L x pα λ α λ α λ∝  

 

Priors for the parameters 
 We have assumed independent informative priors for 

the parameters α and λ . Let us suppose the gamma 

priors for 1 1~ ( , )G a bα  and 2 2~ ( , )G a bλ  as 

  ( ) 1
exp( ) ; 0, 0, 0
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a
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and 
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Thus, we have  

  ( , ) ( ) ( )p p pα λ α λ=   

 

Posterior distribution 
The expression for the posterior, up to proportionality, 

can be written as 
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∑
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α
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 (10) 

 The posterior is intractable and no close form 

inferences are possible. We, therefore, propose to 

consider MCMC methods to simulate samples from the 

posterior so that sample-based inferences can be easily 

drawn.  To implement MCMC calculations, Markov 

chains require a stationary distribution. There are many 

ways to construct these chains.  Several Monte Carlo 

(MC) based sampling methods for evaluating high 

dimensional posterior integrals have been developed: MC 

importance sampling, Metropolis-Hastings sampling, 

Gibbs sampling, and other hybrid algorithms. A landmark 

work for Gibbs sampling in problems of Bayesian 

inference is Gelfand and Smith (1990), which is actually 

a special case of Metropolis-Hastings sampling, 

Metropolis et al. (1953) and Hastings (1970). 

  

Gibbs Sampler : Algorithm 
 It is currently the most popular MCMC sampling 

algorithm in the Bayesian inference literature. Gibbs 

sampling belongs to the Markov update mechanism and 

advocates the philosophy of “divide and conquer.” We 

only need to know the full conditional distributions to 

apply Gibbs sampling. To carry out Gibbs sampling, the 

basic scheme is as follows: 

Step1: Compute the posterior distribution, upto   

proportionality, and specify the full conditionals of 

the model parameters α and λ . The full 

conditionals of α and λ , using (10),  can be 

written as 

• full conditional of α  given λ and x :             

( )
( )

( )2 1 1

1( 1)

n n
a

in
i

p x exp b
α

αλ
α α α

α

+ −

=

 
∝ −  

Γ +  
∏  

• full conditional of λ  given α and x : 

 ( ) ( 1) 1 2

1

exp
i

n
n c

i

p d x
αλ λ λ+ + −

=

   
∝ − +   

   
∑  

Step 2: Select an initial value ( )(0) (0) (0)
 ,θ α λ=  to start 

the chain. 

Step 3: Suppose at the i
th

-step, ( ) ,θ α λ= takes the value 

( )( ) ( ) ( )
 ,

i i iθ α λ=  then from full conditionals, 

generate 

   ( 1)iα +  from ( )( )
| ,

i
p xα λ and 

   ( 1)iλ +  from ( )( 1)
| ,

i
p xλ α + . 

Step 4: This completes a transition from ( )iθ  to ( 1)iθ +  

Step 5: Repeat Step 3,  N  times. 
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Posterior sample : MCMC output   

 Monitor the convergence using convergence 

diagnostics. Suppose that convergence have been reached 

after 'B' iterations (the burn-in period). The MCMC 

output is referred as the sample after removing the initial 

iterations (produced during the burn-in period) and 

considering the appropriate lag (or thin interval). 

 For the posterior analysis, we have the MCMC output 

(posterior sample) ( )(1) ( ) ( )
, , , ,

j Mθ θ θ… … ,  where 

      ( )( ) ( ) ( )
 , ; 1, 2, ,

j j j
j Mθ α λ= = … . 

 The Bayes estimates of ( ),θ α λ= , under squared error 

loss function (SELF), are given by 

  ( ) ( )

1 1

1 1ˆˆ ;   
M M

j j

j jM M
α α λ λ

= =

= =∑ ∑   (11) 

We shall use OpenBUGS software to obtain posterior 

samples. The modular framework of OpenBUGS 

provides an in depth and interactive analysis of the model 

with many built-in features and model extensions can 

easily be accommodated. It is a powerful and flexible tool 

for Bayesian analysis. BUGS (Bayesian inference Using 

Gibbs Sampling) is a piece of computer software for the 

Bayesian analysis of complex statistical models using 

MCMC methods. OpenBUGS, with open source code, 

implements MCMC algorithms and is able to analyse 

highly complex problems for the probability models 

available in OpenBUGS, Thomas et al.(2006). But model 

implementation is difficult for the probability 

distributions, which are not pre-defined in OpenBUGS. 

Each new model (probability distribution) causes a new 

software system to be built. Several probability 

distributions useful in the field of reliability studies are 

incorporated into OpenBUGS, Kumar et al. (2010) and 

Lunn (2010).    

As the generalized Rayleigh distribution is not 

available in OpenBUGS, it requires incorporation of a 

module in ReliaBUGS, Lunn et al.(2013),  which is 

subsystem of OpenBUGS. A module 

dgen.rayleighI_T(alpha, lambda) is written for the 

generalized Rayleigh, the corresponding computer 

program can be obtained from authors, to perform full 

Bayesian analysis in OpenBUGS using the method 

described in Kumar et al. (2010), Kumar (2010) and 

Shrestha and Kumar (2013).  

 

5.    Data  
 A real data set is considered for illustration of the 

proposed methodology. The data extracted from Nichols 

and Padgett (2006), gives 100 observations on breaking 

stress of carbon fibres (in Gba) 

 

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 

1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 

1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 

2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 

2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 

2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 

2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 

3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 

3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 

         3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56 

 

5.1. Computation of MLE  and Model Validation  

  The maximum likelihood estimates (MLEs) are 

obtained by direct maximization of the log-likelihood 

function ( , )α λ�  given in (8) using R software (R 

Development Core Team, 2013). We consider the 

Newton-Raphson algorithm in R to compute the MLEs.  

The contour plot of likelihood is displayed in Figure 1, 

(+) indicates the ML estimates of α  and λ .  

 
Figure 1: Contour plot of log-likelihood 

 The value of loglikelihood is ˆˆ( , ) 141.437α λ = −� . The 

Akaike information criterion (AIC) and Bayesian 

information criterion(BIC) can be used to determine 

which model is most appropriate for the given data. For 

the given data set AIC = 286.874 and BIC = 292.084. The 

Table 1 shows the ML estimates, standard error(SE)  and   

95 % Confidence Intervals for parameters andα λ .  

Table 1.   MLE, standard error and 95% confidence 

interval (CI) 

Parameter MLE Std. Error 95% CI 

alpha 0.7574 0.22862 (0.3093, 1.2055) 

lambda 0.2228 0.03350 (0.1571, 0.2884) 

 

 We compute the Kolmogorov-Smirnov (KS) distance 

between the empirical distribution function and the fitted 

distribution function when the parameters are obtained by 

method of maximum likelihood to check the validity of 
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the model. The value of KS statistic is 0.052 and the 

corresponding p-value is 0.95. 

 

 
Figure 2:  Quantile-Quantile(Q-Q) plot using  MLEs as 

estimate. 

 The high p-value suggests that fit is satisfactory. The 

Q–Q plot for the fitted model is shown in Figure 5, 

Kumar and Ligges(2011).  It can be seen that the fitted 

generalized Rayleigh distribution provides reasonable fit 

to the given data.   

 

6.  Bayesian analysis 
 We assume the independent gamma priors for 

( )~ ,  G a bα  and ( )~ ,  G c dβ  with hyper-parameter 

values ( 0.001).a b c d= = = = We first construct the 

contour of un-normailzed joint posterior of ( ),α λ   in 

Figure 3, where the contour lines are drawn at  90%, 70%, 

40%, 10%  and 5% of the maximum value of the posterior 

density over the grid, Albert(2009). It gives an idea about 

the parameters.
 
 

 

Script 1 : OpenBUGS code for the Bayesian analysis 

 
 

  

 

 

 

 

 

 

 

 

 We run the Script 1 in OpenBUGS to generate two 

Markov chains at the length of 40,000 with different 

starting points of the parameters. We have chosen initial 

values for the parameters, wide spread over the parameter 

space, ( )0.1, 0.1α λ= =  for the first chain and 

( )2.0, 2.0α λ= =  for the second chain. The convergence 

is monitored using trace, ergodic mean and BGR plots. It 

can be observed that the Markov chains reached to the 

stationary condition very quickly, approximately 2000 

iterations. Therefore, burn-in of 5000 samples is more 

than enough to erase the effect of starting point(initial 

values). Finally, samples of size 7000 are formed from 

the posterior by picking up equally spaced every fifth 

outcome (to minimize the auto correlation among the 

generated deviates.), i.e. thin=5, starting from 5001.  

 Therefore, we have the posterior sample from chain 1 

and chain 2 as  
( ) ( )

, ; 1, ,7000; 1, 2.
j j

j ii iα λ  = = 
 

…   

 
Figure 3:     Contour plot of un-normalized joint posterior   density 

of ( ),α λ .   

 

6.1   Convergence diagnostics 
The inferences are valid, if the simulated sample 

provides a reasonable approximation for the posterior 

distribution. We have checked the convergence of the 

simulated draws of ( ),α λ for their stationary distributions 

through different starting points. We have used the 

graphical diagnostics tools such as: trace, ergodic mean 

and the Brooks-Gelman-Rubin(BGR) plots. Figure 4 

shows the trace, cumulative averages and BGR plots for 

the parameters alpha and lambda. The trace plots look 

like a random scatter about some mean value (represented 

by dotted line). The plots of cumulative averages of 

sampled values show steady convergence to the mean 

value (dotted horizontal line). The BGR plots are nice. 

The ratio of variability between chains to variability 

model 
{ 

 for( i in 1 : N ) 

 { 

 x[i] ~ dgen.rayleighI_T(alpha, lambda)  

 f[i] <- density(x[i], x[i]) 

 reliability[i] <- R(x[i], x[i]) 

 } 

# Prior distributions of the model parameters 

 alpha ~ dgamma(0.001, 0.001) 

 beta ~ dgamma(0.001, 0.001) 

} 

Data 
 list(N=100, c(0.39,...,5.56)) 

 Initial values  
 list(alpha= 0.1, lambda= 0.1)   # Chain 1 

 list(alpha=2.0, lambda= 2.0)    # Chain 2 
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within chains is close to one and these are being stable 

(horizontal) across the width of the plot. We may infer 

that the chains have escaped from their initial values and 

found the target distribution of the Markov chain. In fact, 

these plots are hallmarks of rapid MCMC convergence.  

 

 
Figure 4:  The trace plot (on top), cumulative average plot(in 

middle) and the BGR plot(at bottom) for alpha and lambda. 

From Figure 4, we have no evidence that our posterior 

samples produced by OpenBUGS chains failed to 

converge, so we can proceed to use posterior samples for 

Bayesian inference. 

 

6.2   Posterior analysis 

  Bayesian analysis is all about the posterior 

distribution.  All of the statistical inferences of a Bayesian 

analysis come from summary measures of the posterior 

distribution, such as point and interval estimates. The 

posterior analysis is presented via quantitative as well as 

qualitative methods.  

 

6.2.1  Quantitative analysis  
 The numerical summary is presented for 

( )( ) ( )
1 1, ; 1, , 7000

j j
jα λ = …  from chain 1. The chain 2 

produces the similar results.  

 We have considered various quantities of interest and 

their numerical values based on MCMC sample of 

posterior characteristics for generalized Rayleigh 

distribution.  The MCMC results of the posterior mean, 

mode, standard deviation(SD), 2.5
th

 percentile, first 

quartile, median, third quartile, 97.5
th

 percentile, mode 

and skewness of the parameters andα λ are presented in 

Table 2. The Bayes estimates under absolute and zero-one 

loss functions are posterior median and mode, 

respectively. 
  

Table 2.   Numerical summaries based on MCMC  

sample of posterior  characteristics  

 

Characteristics alpha lambda 

Mean 0.6894 0.2141 

Standard  Deviation 0.2348 0.0343 

2.5th Percentile(P2.5) 0.2528 0.1503 

First Quartile (Q1) 0.5307 0.1900 

Median 0.6826 0.2129 

Third Quartile (Q3) 0.8455 0.2363 

97.5th Percentile(P97.5) 1.1730 0.2840 

Mode 0.6685 0.2123 

Skewness 0.1302 0.2132 

  
 The highest probability density (HPD) credible 

intervals for andα λ are constructed by using Chen and 

Shao (1999) algorithm.  

 Let ( )( ; 1, 2, , )
j

j Mα = …  be the corresponding ordered 

MCMC sample of ( )
( ; 1,2, , )

j
j Mα = … . Then, the 

( )100 1 %γ−  HPD intervals for α  is  

  
( )( ) ( 1 )

,
k k Mγ

α α∗ ∗+ −  

 
 
 

,  

where k
∗ is chosen so that  

 
( )( ) ( ) ( )( )( )( )1( )1 1 1

kk Mkk M k M M
min γγ γ

α α α α∗∗ + − + −   ≤ ≤ − −    

− = −  .  

Here [ ]χ denotes the largest integer less than or equal to 

χ . In the same fashion, one can also obtain the Bayes 

HPD credible intervals for λ . 

  Table 3 shows the symmetric credible 

intervals(SCI) and HPD credible intervals for parameters 

alpha, beta and lambda. We have also computed the 95% 

bootstrap confidence interval (BCIs), using the algorithm 

of the percentile bootstrap method, described in section 

3.2, we present the mean of 1000 bootstrap samples of the 

parameters.  

 

Table 3.     Two-sided 95% intervals 

Parameter SCI HPD BCI 

alpha (0.253, 1.173) (0.253, 1.172) (0.401, 1.377) 

lambda (0.150, 0.284) (0.145, 0.283) (0.170, 0.313) 

  

6.2.2 Qualitative analysis 
 We have considered various graphs for qualitative 

analysis of the marginal posteriors of the parameters. 
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These graphs include the boxplot, density strip plot, 

histogram, marginal posterior density estimate and rug 

plots for the parameters. We have also superimposed the 

95% HPD intervals.  

   These graphs provide almost complete picture of the 

posterior uncertainty about the parameters. We have used 

the posterior sample ( )( ) ( )
1 1,

j jα λ ; 1, ,7000j = …  to draw 

these graphs. 

 

 
Figure 5(a):   Histogram, marginal posterior density  

   and 95% HPD interval 

 

 
Figure 5(b):   Boxplot and density strip plot of ,α based on 

posterior sample. 

 

 Jackson (2008) introduced the density strip plot for a 

univariate distribution as a shaded rectangular strip, 

whose darkness at a point is proportional to the 

probability density. It may be noted from Figures 5(b) 

and 6(b) that density strip plots are more informative as 

compared to corresponding boxplot.  

 Probability histogram approximates the marginal 

posterior distribution.  It is the most popular non-

parametric method to estimate the density function and 

gives an idea about skewness, behaviour in the tails, 

presence of multi-modal behaviour, and data outliers. It 

may be useful to compare the fundamental shapes 

associated with standard analytic distributions. 

 The kernel density estimates have been drawn using R 

software with the assumption of Gaussian kernel and 

properly chosen values of the bandwidths. It can be seen 

that α �and λ  show positive skewness.  

 

 
Figure 6(a):   Histogram, marginal posterior density and 95% HPD 

interval based on posterior sample. 

 

 Figure 5(a) represents the histogram, marginal 

posterior density, rug plot and 95% HPD interval for α . 

The boxplot and the density strip plot are displayed in 

Figure 5(b).   

 

Figure 6(b):  Boxplot and density strip plot of .λ  

   We have plotted the similar graphs in Figure 6(a) and 

(b) for λ .   
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6.2.3 Comparison with MLE 

 For the comparison with ML estimates, we have 

computed the density function at each observed data point 

for 7000 posterior samples, ( )( ) ( )
1 1,

j jα λ ; 1, ,7000j = … as 

  ( )( ) ( )( )
1 1; ,

j jj
if x α λ   ; 1, ,100i = … . 

In Figure 8 we have plotted th th th
2.5 , 50 and 97.5

quantiles of the estimated density, it can be considered as 

evaluation of model fit, based on posterior sample.   

 

 
                         Figure 8:   Density estimates 

 

 The density corresponding to MLE has been plotted 

using the ML estimates of the parameters. We observe in 

the Figure 8, the MLEs and the Bayes estimates are quite 

close.  

  

6.2.4 Estimation of hazard and reliability functions 
  The posterior samples may be used to completely 

summarize the posterior uncertainty about the functions 

of parameters e.g. reliability and hazard functions. 

Suppose we wish to give point and interval estimates for 

reliability and hazard functions at the mission time t=2.41 

(at the 40
th

 observed data point).   

 For the given posterior sample ( )( ) ( )
1 1,

j jα λ ;

1, ,7000j = … , we can obtain the posterior sample for the 

reliability and hazard functions at t=2.41, using (4) and 

(5), as 

  ( )( ) ( )( )
1 12.41; , ; 1, ,7000

j jj
h x jα λ= = …   and  

     ( )( ) ( )( )
1 12.41; , ; 1, ,7000

j jj
R x jα λ= = … . 

 The MCMC results of the posterior mean, mode, 

standard deviation (SD), first quartile, median, third 

quartile, mode,   skewness, 95% symmetric credible 

intervals(SCI) and HPD credible intervals of reliability 

and hazard functions are displayed in Table 4.   

    
Table 4.   Posterior summary for Reliability and Hazard 

functions at t=2.41 

Characteristics Reliability Hazard 

Mean 0.5451 0.6979 

Standard  Deviation 0.0392 0.0736 

First Quartile (Q1) 0.5188 0.6470 

Median 0.5453 0.6946 

Third Quartile (Q3) 0.5720 0.7447 

Mode 0.5441 0.6859 

Skewness -0.0460 0.2583 

95% SCI (0.4682, 0.6226) (0.5623, 0.8516) 

95% HPD (0.4662, 0.6199) (0.5572, 0.8459) 

   

 The ML estimates of reliability and hazard function at 

t=2.41 are computed using invariance property of the 

MLE. The ML estimates are ˆ( 2.41) 0.7061h t = =  and 
ˆ( 2.41) 0.5505R t = = . 

  

 
 

 
Figure 10:    MCMC output of R(t = 2.41) and h(t =2. 41). Dashed 

line(...) represents the posterior median and solid lines(-) represent 

lower and upper bounds of 95% probability intervals (HPD) 

 A trace plot is a plot of the iteration number against the 

value of the draw of the parameter at each iteration. 

Figure 10 displays 7000 chain values for the hazard 

41( 2. )h t =  and reliability 41( 2. )R t = functions, with their 
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sample median and 95% HPD credible intervals. 
 The 95% percentile bootstrap confidence interval 

(BCIs) for reliability and hazard function at t=2.41, using 

the algorithm described in section 3.2, based on 1000 

bootstrap samples are (0.5378, 0.5693) and (0.6329, 

0.7933), respectively.  

 Now we shall demonstrate the effectiveness of 

proposed methodology for the entire data set. Since we 

have an effective MCMC technique, we can estimate any 

function of the parameters. For this, we have computed 

the reliability function given in (4) at each data point, 

using posterior sample ( )( ) ( )
1 1,

j jα λ ; 1, ,7000j = …  

 ( )( ) ( )( )
1 1; , ; 1, ,100; 1, ,7000.

j jj
iR x i jα λ = =… …   

  
Figure 11:  Reliability function estimate using MCMC and 

Kaplan-Meier estimate 

 The Figure 11, exhibits the estimated reliability 

function (dashed line: 2.5 and 97.5
th th  quantiles; solid  

line : 50
th  quantile) using Bayes estimate based on 

MCMC output. We have superimposed the Kaplan-Meier 

estimate of the reliability function to make the 

comparison more meaningful. The Figure 11 shows that 

reliability estimate based on MCMC is very close to the 

empirical reliability estimates. 
 

7.   Posterior predictive analysis 
  A Bayesian approach for checking whether the 

model fits the data is known as posterior predictive 

checking. To do posterior predictive checking, we 

generate replicates of the dataset from the predictive 

distribution and compare these replicate datasets to the 

sample. If the replicate datasets and the sample are 

similar, we conclude that the model fits the data, (Gelman 

2003) and (Gelman et al. 2004).  Modern Bayesian 

computational tools, however, provide straightforward 

solutions as one can easily simulate predictive samples if 

MCMC outputs are available from the posterior 

corresponding to the assumed model. Let 1( , , )nx x x= …  

is a vector of n observations from the model ( , )GRD α λ . 

We can simulate the posterior predictive distribution as 

 

• Obtain posterior sample

( )( ) ( ) ( )
 , ; 1, 2, ,

j j j
j Mθ α λ= = …

 

• For each posterior sample ( )jθ , simulate n data 

points, as ( ), ( ) ( )
~ ,

rep j j j
ix GRD α λ ; 1, 2, ,j M= …

and 1,2, ,i n= …  

Thus, for each sampled value, ( )( ) ( )
,

j jα λ , we obtain M 

replicated data set  ( ),, ,
1 , , .
rep jrep j rep j

nx x x= …  

 The predictive analysis is based on 2000 posterior 

samples. For this purpose, 2000 samples have been drawn 

from the posterior using MCMC procedure and then 

obtained predictive samples from the model under 

consideration using each simulated posterior sample. In 

fact, we have 2000 replicates for each data point 

; 1, ,100ix i = … . The graphical method is one of the best 

way to assess model adequacy based on posterior 

predictive distributions. We view the model-checking as a 

comparison of the data with the replicated data given by 

the model, which includes exploratory graphics, 

Chaudhary and Kumar(2013). 

  

 
Figure 12: Q-Q plot of predictive quantiles versus empirical 

quantiles 

Figure 12 represents the  Q-Q plot of predicted 

quantiles vs. observed quantiles.  The estimate of CDF 

based on replicated data given by the model is displayed 

in Figure 13. Figure 13 exhibits graphical posterior 

predictive check of the model adequacy, solid line(   ) 

represents the posterior median and dashed lines(...) 

represent lower and upper bounds of 95% probability 

intervals, empirical distribution function is superimposed. 
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We, therefore, conclude that the generalized Rayleigh 

distribution is compatible with the given data set. 

 

 
Figure 13:    Estimate of CDF  based on predicted values  

 To obtain further clarity on our conclusion for the 

study of model compatibility, we have considered 

plotting of density estimates of second largest and largest  

 

 

Figure 14:  Posterior predictive densities of (99)
rep

x  and (100)
rep

x , 

vertical lines represent corresponding observed value 

i.e. ( )(99) (100)and
rep rep

x x  replicated future observations from 

the model with superimposed corresponding observed 

data, Figure 14.   

 As the Figure 14 shows, the posterior predictive 

distributions are centered over the observed values, which 

indicate good fit. In general, the distribution of replicated 

data appears to match that of the observed data fairly 

well.  

 The Table 5 shows the MCMC results of the posterior 

mean, median, mode and 95% HPD credible intervals for 

      ( )(2) (30) (99) (100)
, , and

rep rep rep rep
x x x x  

 

Table 5.   Posterior  characteristics 

 

 Observed Mean Median Mode HPD 

(2)
rep

x  0.81 0.83 0.90 0.85 (0.640, 1.014) 

(30)
rep

x  2.00 2.04 2.11 2.06 (1.857, 2.223) 

(99)
rep

x  5.08 4.93 5.06 4.88 (4.517, 5.340)  

(100)
rep

x  5.56 5.41 5.56 5.35 (4.943, 5.890) 

    

 Overall, the results of the posterior predictive 

simulation indicate that model fits these data particularly 

well. Model fit assessments based on posterior predictive 

checks should not be used for model selection, Ntzoufras 

(2009). 

 

8. Bayesian analysis for Type-II censored data
  In this section, we shall address the problem of 

Bayesian analysis of type-II censored data from 

( , ).GRD α λ  Let us consider that the last four observations 

of the data set, given in section 5, are censored so that 

only the first 96 observations are available for analysis. 

The problem we wish to consider is that of estimating the 

parameters α and λ , as well as predicting the future four 

failure times ( )97:100 98:100 99:100 100:100, , , .x x x x  Assume the 

independent gamma priors for the parameters. The 

straightforward solution may be obtained by making 

slight modifications in Script 1.  
The OpenBUGS code used to analyze this problem is 

shown in Script 2. In Script 2, it may be noted that in 

model section the likelihood is written for uncensored and 

censored observations separately, and in data section 

censored observations are treated as NA(Not Available).  

We used two distinct sets of initial values to start the 

Markov chain for the model parameters. We let 

OpenBUGS to generate the initial values for the censored 

observations. We have monitored α and λ  as well as 
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future four failure times ( )97:100 98:100 99:100 100:100, , , ,x x x x  

where the 97:100x is written as x.pred[1]   in Script 2. The 

30000 iterations are generated from each chain. We 

discarded the first 5000(burn-in) MCMC iterations and 

used the remaining 25000. In order to reduce the 

autocorrelation within the MCMC series for the 

correlation parameter we used every 5th MCMC iteration 

for posterior computations. 

 

Script 2 : OpenBUGS code for the censored case 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, we have the posterior sample from chain 1 

and chain 2 as 

  ( ) ( ) ( ) ( )
97:100 98:100 99:100 100:100

( ) ( )
, , , , , ;

j j j jj j
x x x xi iα λ 

 
 

 

1, ,5000; 1, 2.j i= =… We have also checked the 

convergence of the sequences ofα and λ  for their 

stationary distributions through different starting values. 

It was observed that the Markov chains reached to the 

stationary condition very quickly. 

We have considered chain 1 for posterior inference. 

Figure 15 shows the trace plot of α and λ  for 5000 

sampled prevalence values after burn-in. The plot shows 

good mixing of the Gibbs sampler. The posterior mean is 

represented by dashed line where as solid lines represent 

95% HPD confidence intervals for the parameters. The 

quantitative measures based on posterior sample are 

summarized in Table 6. The histogram, marginal 

posterior density and 95% HPD for α and λ  are plotted in 

Figure 16 and Figure 17, respectively. Similar graphs for 

censored failures are depicted in Figure 18. 

 

 

 
Figure 15: Trace plot ofα and λ . Dashed line(...) represents the 

posterior mean and solid lines(-) represent lower and 

upper bounds of 95% probability intervals (HPD) 

 
Table 6.   Numerical summaries based on MCMC  

sample of posterior  characteristics  

Characteristics alpha lambda 

Mean 0.6718 0.2072 

Standard  Deviation 0.2370 0.0379 

First Quartile (Q1) 0.5079 0.1830 

Median 0.6627 0.2064 

Third Quartile (Q3) 0.8256 0.2319 

Mode 0.6625 0.1965 

Skewness 0.2736 0.0125 

95% SCI (0.227, 1.164)  (0.128, 0.284)  

95% HPD  (0.215, 1.146)  (0.128, 0.283)  

 

Table 7.   Posterior  summary based on MCMC sample  

 Mean Median Mode 95% HPD 

x97:100    4.84 4.90 4.74 ( 4.70, 5.11 )  

x98:100    5.03 5.14 4.86 ( 4.71, 5.49 )  

x99:100    5.29 5.47 5.10 ( 4.76, 5.98 )  

x100:100    5.76 6.06 5.41 ( 4.85, 6.87 )  

 

model 
{ 

for( i in 1 : N - 4 )  # uncensored observations 

{ 

x[i] ~ dgen.rayleighI_T(alpha, lambda)  

} 

     for(i in N - 3 : N)  # censored observations 

    {  

     x[i] ~ dgen.rayleighI_T(alpha, lambda) C(x[N - 4], ) 

     } 
   for(i in 1 : 4) # predicted failure times of censored items 

     { 

       x.pred[i] <- ranked(x[N- 3 : N], i) 

}  

# Prior distributions of the model parameters 

 alpha ~ dgamma(0.001, 0.001) 

 beta ~ dgamma(0.001, 0.001) 

} 

Data 

 list(N=100, c(0.39,...,4.70, NA,NA,NA,NA)) 

 Initial values  
 list(alpha= 0.1, lambda= 0.1)   # Chain 1 

 list(alpha=2.0, lambda= 2.0)    # Chain 2 
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 The Table 7 shows the MCMC results of the posterior 

mean, median, mode and 95% prediction intervals for 

censored failure times ( )97:100 98:100 99:100 100:100, , , .x x x x  

 

 
Figure 16:   Histogram, marginal posterior density and  

   95% HPD interval based on posterior sample. 

 

 
Figure 17:   Histogram, marginal posterior density and  

              95% HPD interval based on posterior sample. 

 

 

 

 

 
Figure 18:   Histogram, posterior predictive densities and 95% 

HPD intervals of ( )97:100 98:100 99:100 100:100, , ,x x x x  

based on posterior sample 

We have observed that the Gibbs sampling technique 

can be used quite effectively, for estimating the posterior 

predictive density and also for constructing predictive 

interval in case of censored sample. 

 

9. Conclusion 
 The methods described to implement modern 

computational- based classical as well as Bayesian 

approaches related to generalized Rayleigh distribution. 
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We have proposed an integrated procedure for Bayesian 

inference using MCMC methods. We obtain the Bayes 

estimates and the corresponding credible intervals using 

Gibbs sampling procedure for complete as well as for type-II 

censored data. We have obtained the estimates and 

probability intervals for parameters, hazard and reliability 

functions. We have presented the model compatibility 

analysis via the posterior predictive check method.  We 

have applied the developed techniques on a real data set. 
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