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Abstract: In this paper, an attempt is made to determine 

the unknown temperature, displacement and stress 

functions on outer curved surface, where as third kind 

boundary condition maintained on upper surface and zero 

temperature is maintained on lower boundary surface. 

The governing heat conduction has been solved by using 

finite Hankel transform technique. The results are 

obtained in series form in term of Bessel’s functions. The 

results for unknown displacements and stresses have been 
computed numerically. 
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Introduction: 

  
During the second half of the twentieth 

century, non –isothermal problems of the 

theory of elasticity became increasingly 

important. This is due mainly to their many 

applications in diverse fields. First, the high 

velocity of modern aircrafts give rise to an 

aerodynamic heating, which produce intense 

thermal stresses reducing the strength of 

aircrafts structure. 

Two dimensional transient problems for a thick 

annular disc in thermoelasticity studied by 

(Dange et al., 2009). An inverse temperature 

field of theory of thermal stresses investigated 

by (Grysa et al; 1981) while A note of quasi –

static thermal stresses in steady state thick 

annular disc and an inverse quasti-static 

thermal stresses in thick annular disc are 

studied by (Gaikwad et al; 2010). An inverse 

problem of coupled thermal stress fields in a 

circular cylinder considered by (Noda; 1989). 

In this paper, in the first problem, an 

attempt is made to determine the unknown 

temperature, displacement and stress functions 

on curved surfaces, where an arbitrary heat is 

applied on the upper surface (z = h) and 

maintained zero on lower surface (z = - h) 

while in second problem third kind boundary 

condition is maintained on lower and upper 

surface of an annular disc. The governing heat 

conduction equation has been solved by using 

Hankel transform technique. The results are 

obtained in series form in terms of Bessel’s 

functions and illustrated numerically.  

 

--------------------------------------------- 
*2000 Mathematics Subject Classifications: primary 

35A25, secondary 74M99, 74K20. 

 

This paper contains new and novel 

contribution of thermal stresses in an annular 

disc under steady state. The above results were 

obtained under steady state field. The result 

presented here are useful in engineering 

problem particularly in the determination of 

the state of strain in an annular disc 

constituting foundations of containers for hard 

gases or liquids, in the foundations for furnaces 

etc. 

 

2. Results Required: 

 
The finite Hankel transform over the variable r 

and it inverse transform defined in [7]. 
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and 1 , 2 ,………..are the roots transcendental 

equation, 
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( )nJ x  is Bessel function of the first kind of 

the order n  and ( )nY x Bessel function of the 

second kind of the order n . 

 

3. Formulation of the Problem: 
 

 Consider an annular disc of thickness 2h  

occupying space D:a r b  , h z h    .  

The differential equation governing the 

displacement potential function is given in [7] 

as, 
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  and  ta  are the poisson’s ratio and the linear 

coefficient of thermal expansion of the 

material of the plate and T is the temperature 

of the plate satisfying the differential equation   
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The stress functions rr and   are given 

by, 
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where  is the Lame’s constant, while each of 

the stress functions ,rz zz  and z  are zero 

within the plate in the plane state of stress. The 

equations (3.1) to (3.8) constitute the 

mathematical formulation of the problem under 

consideration. 

 

4. Solution of the Problem: 

  
Applying finite Hankel transform defined in 

[6] to the equations (3.1) to Eq. (3.6), one 

obtain                    
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where T  is the Hankel transform of T. 

On solving Eq. (4.1) under the conditions 

given in Eq. (3.5) and Eq. (3.6).one obtains 
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On applying the inverse Hankel transform 

defied in Eq. (2.2) to Eq. (4.2), one obtain the 

expression for the temperature as  
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where 
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Equation (4.3) and (4.4) are the desired 

solution of the given problem. 

 

Determination of Thermoelastic 

Displacements: 
 

Substituting the values of T(r, z) from Eq. (4.3) 

in Eq. (3.1) one obtains the thermoelastic 

displacement function U(r, z) as,  
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Determination of Stresses Functions: 
  

Using Eq. (4.6) in Eq. (3.7) and (3.8), one 

obtains the stress functions rr  and   as, 
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Special Case and Numerical 

Calculations: 
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The numerical calculation have been carried 

out for steel (SN 50 C) plate with parameters 

1a m , 1b m , 0.5h m ,thermal diffusivity
6 2 115.9 10 ( )k m s    and poisons ratio 

0.281  ,while 1 3.1965  , 2 6.3132  ,

3 9.4445  , 4 12.5812  , 5 12.7199 

,being the positive roots of transcendental 

equation  1 1
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Concluding Remarks: 

 
In this paper, we have discussed the steady –

state thermoelastic problem for an annular disc 

on outer curved surface of the annular disc, 

whereas arbitrary heat is applied on the upper 

surface and zero temperature is maintained on 

lower surface. 

The finite Hankel transform transform 

technique is used to obtain the numerical 

results. The thermoelastic behavior is 

examined such as unknown temperature, 

displacement and stresses that are obtained can 

be applied to the design of useful structures or 

in engineering applications. Also any particular 
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case of special interest can be derived by 

assigning suitable values to the parameters and 

functions in the expressions [4.3], [4.4], [4.6]-

[4.9]. 
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