# Some Idempotents in Abelian Group Algebra 

Dalip Singh ${ }^{1 *}$, Jagbir Singh ${ }^{2 *}$, Pankaj Arora ${ }^{3 *}$<br>${ }^{1,2,3}$ Department of Mathematics,M.D. University, Rohtak - 124001, INDIA.<br>*Corresponding Address:<br>${ }^{1}$ dsmdur@gmail.com, ${ }^{2}$ ahlawatjagbir@gmail.com, ${ }^{3}$ pankajarora1242@yahoo.com

## Research Article

Abstract: Expressions for pairwise orthogonal idempotents in $F G$, the semi simple group algebra of the abelian group $G$ oforder $p^{n}$ and
$p^{n} q$ over the finite field $F$ of prime power order $p^{n} \lambda+1$ and $p^{n} q \lambda+1$ respectively, are obtained.
Keywords : Group algebra, finite field, orthogonal idempotents.

## Introduction

Let $F=G F(q)$ be a finite field of prime power order $q$ and let $n$ be a positive integer which is relatively prime to $q$. The cyclic codes of length $n$ over $F$ can be viewed as ideals in either $\frac{F[x]}{\left\langle x^{n}-1\right\rangle}$ or as ideals in the group algebra $F C_{n}$, where $C_{n}$ denotes a cyclic group of order $n$. If $G$ is an abelian group of order $n$, then the ideals of the group algebra $F G$ are called abelian codes. Milies and Ferraz [6] have found some minimal abelian codes of length $p^{n}$ and $2 p^{n}$ extending the results of Arora and Pruthi ([1],[8]). In this paper,we describe method to find pair wise orthogonali dempotents in group algebra $F G$, where $G$ is an abelian group of order $p^{n}$ and $p^{n} q$.In Section 2, we give expression for these idempotents in $F G$, where $G$ is an abelian group of order $p^{n}$, where $p$ is an odd prime and $F$ is a field of prime power order $q$ with $q=p^{n} \lambda+1$. In section 3, we discuss the case when $G$ is an abelian group of order $p^{n} q, p$ and $q$ are odd primes, and $F$ is a field of prime power order $q$ with $q=p^{n} q \lambda+1$..In section 4, we give an example for an abelian group of order 9 .
$G$ is Abelian group of order $p^{n}, p$ is an odd prime
If $G=\langle g\rangle=C_{n}$ is a finite cyclic group of order $n, F$ is a field of order $q_{\text {with }}(q, n)=1$ and $q=n \lambda+1$ for some $\lambda \geq 0$.
Then, $F C_{n}$ has $n_{\text {primitive idempotents given by }}$
$e_{i}=\frac{1}{n} \sum_{j=0}^{n-1} \alpha^{i j} g^{j}, \quad 0 \leq i \leq n-1$,
where $\alpha$ is $n^{\text {th }}$ root of unity in $F[8]$.

## Theorem

Let $G$ is an abelian group of order $p^{n}$, where $p$ is an odd prime and $H$ is a subgroup of $G$ of order $p^{m}$ such that $G / H$ is cyclic, say $\left\langle\mathrm{a} H>. F\right.$ Is a field of order $p^{n} \lambda+1$ for some $\lambda>0$.Then,
$S_{i}=\left(\frac{1}{p^{n}} \sum_{h \in H} h\right)\left(\sum_{j=0}^{p^{n-m}-1} \alpha^{i j} \mathrm{a}^{j}\right)$,
$0 \leq \mathrm{i} \leq p^{n-m}-1$, Where $\alpha$ is $\left(p^{n-m}\right)^{t h}$ root of unity in $F$, are orthogonal idempotents in $F G$,

Proof Let $G$ be an abelian group of order $p^{n}$ and $H$ be a subgroup of $G$ of order $p^{m}$ such that $G / H$ is cyclic, say $<\mathrm{a} H>$.
Here, $|G / H|=p^{n-m}=t$ (say).
Also, $\mathrm{a}^{t} \in H$. Consider a cyclic group $G_{1}$ of order $t$ and let $G_{1}=\left\langle b>\right.$. Then, $G_{1} \cong G / H$.The orthogonalidempotents of $F G_{1}$ are
$e_{i}=\frac{1}{t} \sum_{j=0}^{t-1} \alpha^{i j} b^{j}, \quad 0 \leq i \leq t-1$,
where $\alpha$ is $t^{\text {th }}$ root of unity in $F$, that is, $\alpha$ is a solution of $\mathrm{x}^{t}=1$.
Now consider the elements of $F G$ given by
$\xi_{i}=\frac{1}{t} \sum_{j=0}^{t-1} \alpha^{i j} \mathrm{a}^{j}, \quad 0 \leq \mathrm{i} \leq \mathrm{t}-1$.
We assert that
$S_{i}=\left(\frac{1}{|H|} \sum_{h \in H} h\right) \xi_{i}$
for $0 \leq i \leq t-1$, are orthogonalidempotents in $F G$.
For $0 \leq i \leq t-1$, we have

$$
\begin{aligned}
S_{i}^{2} & =S_{i} S_{i} \\
& =\left(\left(\frac{1}{p^{n}} \sum_{h \in H} h\right)\left(\sum_{j=0}^{t-1} \alpha^{i j} \mathrm{a}^{j}\right)\right)\left(\left(\frac{1}{p^{n}} \sum_{n \in H} h\right)\left(\sum_{j=0}^{t-1} \alpha^{i j} \mathrm{a}^{j}\right)\right) \\
& =\frac{1}{p^{2 n-m}}\left\{t \left(\sum_{h \in H} h+\alpha^{i} \mathrm{a} \sum_{h \in H} h+\alpha^{2 i} \mathrm{a}^{2} \sum_{h \in H} h+\ldots\right.\right. \\
& \left.\left.+\alpha^{(t-2) i} \mathrm{a}^{t-2} \sum_{h \in H} h+\alpha^{(t-1) i} \mathrm{a}^{t-1} \sum_{h \in H} h\right)\right\} \\
& =\left(\frac{1}{p^{n}} \sum_{n \in H} h\right)\left(\sum_{j=0}^{t-1} \alpha^{i j} \mathrm{a}^{j}\right) \\
& =S_{i}
\end{aligned}
$$

Also for $i, j$ such that $i \neq j, i>j$, we have

$$
\begin{aligned}
& S_{i} S_{j}=\left(\left(\frac{1}{p^{n}} \sum_{n \in H} h\right)\left(\sum_{k=0}^{t-1} \alpha^{i k} \mathbf{a}^{k}\right)\right)\left(\left(\frac{1}{p^{n}} \sum_{n \in H} h\right)\left(\sum_{l=0}^{t-1} \alpha^{j i} \mathbf{a}^{l}\right)\right) \\
& =\frac{1}{p^{2 n-m}}\left\{\sum_{n \in H} h+\alpha^{i} \sum_{n \in H} h \mathrm{a}+\alpha^{2 i} \sum_{n \in H} h \mathrm{a}^{2}+\ldots+\alpha^{(t-1) i} \sum_{n \in H} h \mathrm{a}^{t-1} \text { Since } \mathrm{a}^{t} \in H\right. \text {, so we have } \\
& +\alpha^{j} \sum_{n \in H} h \mathrm{a}+\alpha^{i+j} \sum_{n \in H} h \mathrm{a}^{2}+\ldots+\alpha^{(t-1) i+j} \sum_{n \in H} h \mathrm{a}^{t} \\
& +\alpha^{2 j} \sum_{h \in H} h \mathrm{a}^{2}+\alpha^{i+2 j} \sum_{h \in H} h \mathrm{a}^{3} \ldots+\alpha^{(t-1) i+2 j} \sum_{h \in H} h \mathrm{a}^{t+1}+\ldots \\
& \left.+\alpha^{(t-1) j} \sum_{n \in H} h \mathrm{a}^{t-1}+\alpha^{i+(t-1) j} \sum_{k \in H} h a^{t} \ldots+\alpha^{(t-1) i t(t-1) j} \sum_{n \in H} h \mathrm{a}^{2 t-2}\right\} \\
& \sum_{g \in H} g a^{t}=\sum_{g \in H} g \text { and } \sum_{g \in H} g \mathrm{a}^{t+i}=\sum_{g \in H} g a^{i} \quad \text { for all } i \geq 0 \text {. Using this coefficient of } \frac{1}{p^{2 n-m}} \sum_{g \in H} g \mathrm{a}^{k} \text { in the above expression is }
\end{aligned}
$$

$\begin{aligned} & \left\{\alpha^{k j}+\alpha^{(k-1) j+i}+\alpha^{(k-2) j+2 i}+\ldots+\alpha^{k i}\right\} \\ & +\left\{\alpha^{(k+1) i+(t-1) j}+\alpha^{(k+2) i+(t-2) j}+\ldots+\alpha^{(t-1) i+(k+1) j}\right\}\end{aligned}=\alpha^{k j}\left\{\frac{\alpha^{(k+1)(i-j)}-1}{\alpha^{(i-j)}-1}\right\}+\alpha^{(k+1) i+(t-1) j}\left\{\frac{\alpha^{(t-k-1)(i-j)}-1}{\alpha^{(i-j)}-1}\right\}=0$. Thus, $\left\{S_{i}\right\}$
$0 \leq i \leq t-1$, are orthogonalidempotentsin $F G$.

## Theorem

The complete set of orthogonalidempotents in $F G$, where $F$ is a field of order $q$ with $q=p^{n} \lambda+1$ for some $\lambda>0$ and $G$ is an abelian group of order $p^{n}$ having a sequence of subgroups $G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots \supset G_{n-1} \supset G_{n}=\langle e>$ such that $\left|G_{i} / G_{i+1}\right|=p(0 \leq i \leq n-1)$, is given by $\left\{e_{0, i_{0}} e_{1, i, i} \ldots e_{n-1, i_{n-1}}\right\},\left(0 \leq i_{j} \leq p\right)(0 \leq j \leq n-1)$ where $G_{j} / G_{j+1}=<\mathrm{a}_{j} G_{j+1}>$ and
$e_{j, i_{j}}=\frac{1}{p^{n-j}}\left(\sum_{g_{j+1} \in G_{j+1}} g_{j+1}\right)\left(\sum_{k=0}^{p-1} \alpha_{j}^{i_{j} k} \mathrm{a}_{j}{ }^{k}\right), \alpha_{j}$ is $p^{t h}$ root of unity in $F$, are orthogonalidempotents in $F G_{j}$ for $0 \leq j \leq n-1$.

## Proof

Let $G$ be an abelian group of order $p^{n}$ and $G_{1}$ be the subgroup of order $p^{n-1}$. Then, $\left|G / G_{1}\right|=p$ and so $G / G_{1}$ is cyclic. Let $G / G_{1}=<\mathrm{a}_{0} G_{1}>$. Then,

$$
\begin{aligned}
& e_{0, i_{0}}=\frac{1}{p^{n-1}}\left(\sum_{g_{1} \in G_{1}} g_{1}\right)\left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_{0}^{i_{0} j} \mathrm{a}_{0}^{j}\right) \\
& \quad=\frac{1}{p^{n}}\left(\sum_{g_{1} \in G_{1}} g_{1}\right)\left(\sum_{j=0}^{p-1} \alpha_{0}^{i_{0} j} \mathrm{a}_{0}^{j}\right),
\end{aligned}
$$

for $0 \leq i_{0} \leq p-1$, are orthogonalidempotents in $F G, \alpha_{0}$ is $p^{\text {th }}$ root of unity in $F$.
Now, let $G_{2}$ be the subgroup of $G_{1}$ of order $p^{n-2}$. Then, $\left|G_{1} / G_{2}\right|=p$ and so $G_{1} / G_{2}$ is cyclic. Let $G_{1} / G_{2}=<\mathrm{a}_{1} G_{2}>$. Then,

$$
\begin{aligned}
e_{1, i_{1}} & =\frac{1}{p^{n-2}}\left(\sum_{g_{2} \in G_{2}} g_{2}\right)\left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_{1}^{i_{1} j} \mathbf{a}_{1}^{j}\right) \\
& =\frac{1}{p^{n-1}}\left(\sum_{g_{2} \in G_{2}} g_{2}\right)\left(\sum_{j=0}^{p-1} \alpha_{1}^{i_{1} j} \mathbf{a}_{1}^{j}\right),
\end{aligned}
$$

for $0 \leq i_{1} \leq p-1$, are orthogonalidempotents in $F G_{1}, \alpha_{1}$ is $p^{\text {th }}$ root of unity in $F$.
Continuing in this way, we will obtain a subgroup $G_{n-2}$ of order $p^{2}$ and its subgroup $G_{n-1}$ of order $p$.Then,

$$
\begin{aligned}
& e_{n-2, i_{n-2}}=\frac{1}{p}\left(\sum_{g_{n-1} \in G_{n-1}} g_{n-1}\right)\left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_{n-2}^{i, j} \mathbf{a}_{n-2}^{j}\right) \\
& \quad=\frac{1}{p^{2}}\left(\sum_{n-1} / G_{n-2} \mid=p \text { and so } \sum_{g_{n-1} \in G_{n-1}} g_{n-1}\right)\left(\sum_{j=0}^{p-1} \alpha_{n-2}^{i_{n-2} j} \mathbf{a}_{n-2}^{j}\right),
\end{aligned}
$$

for $0 \leq i_{n-2} \leq p-1$, are orthogonalidempotents in $F G_{n-2}, \alpha_{n-2}$ is $p^{t h}$ root of unity in $F$.
Also, $\left|G_{n-1} / G_{n}\right|=p$, so $G_{n-1}$ is cyclic. Let $G_{n-1}=<\mathrm{a}_{n-1}>$.Then,
$e_{n-1, i_{n-1}}=\frac{1}{p}\left(\sum_{j=0}^{p-1} \alpha_{n-1}^{i_{n-2} j} \mathbf{a}_{n-1}^{j}\right)$,
for $0 \leq i_{n-1} \leq p-1$, are orthogonalidempotents in $F G_{n-1}, \alpha_{n-1}$ is $p^{\text {th }}$ root of unity in $F$.
Now, the complete set of orthogonalidempotents of $F G$ is given by
$e_{i}=e_{i_{n-1} \mid p^{n-1}+i_{n-2} p^{n-2}+\ldots+i_{i} p+i_{0}}=e_{0, i_{0}} \cdot e_{1, i_{1}} \ldots e_{n-1, i_{n-1}}$,
where $i=i_{n-1} p^{n-1}+i_{n-2} p^{n-2}+i_{n-2} p^{n-2}+\ldots+i_{1} p+i_{0}$, as

$$
\begin{aligned}
& e_{i}^{2}=\left(e_{i_{n-1}, p^{n-1}+i_{n-2}, p^{n-2}+\ldots+i_{p} p+i_{0}}\right)^{2} \\
& =\left(e_{0, i_{0}} \cdot e_{1, i_{1}} \ldots e_{n-1, i_{n-1}}\right)^{2} \\
& =e_{0, i_{0}} \cdot e_{1, i_{1}} \cdots e_{n-1, i_{n-1}} \\
& =e_{i}
\end{aligned}
$$

For $i \neq j$, the representation of i and j are as follows:

$$
\begin{aligned}
& i=i_{n-1} p^{n-1}+i_{n-2} p^{n-2}+i_{n-2} p^{n-2}+\ldots+i_{1} p+i_{0} \\
& j=j_{n-1} p^{n-1}+j_{n-2} p^{n-2}+j_{n-2} p^{n-2}+\ldots+j_{1} p+j_{0}
\end{aligned}
$$

and they must differ at at least one indices, say $k^{\text {th }}$, that is, $i_{k} \neq j_{k}$, then

$$
e_{k, i_{k}} \cdot e_{k, j_{k}}=0
$$

Thus $\quad e_{i} \cdot e_{j}=0$.

## Theorem

The complete set of orthogonalidempotents in $F G$ where $F$ is a field of order $q$ with $q=p^{n} \lambda+1$ for some $\lambda>0, G$ is an abelian group of order $p^{n}$ having a sequence of subgroups $G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots \supset G_{s}=\langle e\rangle$ with the property that $G_{i+1}$ is subgroup of $G$ of smallest order $p^{n_{i}+1}$ (say), such that $G_{i} / G_{i+1}$ is cyclic, is given by
$\left\{e_{0, i_{0}} \cdot e_{1, i} . . e_{s-1, j_{j-1}}\right\},\left(0 \leq i_{j} \leq \frac{p^{n_{j}}}{p^{j_{j+1}}}-1\right)(0 \leq j \leq s-1)$ where $G_{j} / G_{j+1}=<\mathrm{a}_{j} G_{j+1}>$ and
$e_{j, i_{j}}=\left(\frac{1}{p^{n_{j}}} \sum_{g_{j+1} \in G_{j+1}} g_{j+1}\right)\left(\sum_{k=0}^{p^{n_{j}-n_{j+1}}-1} \alpha_{j}^{i_{j} k} a_{j}^{k}\right)$,
$\alpha_{j}$ is $\left(p^{n_{j}-n_{j+1}}\right)^{t h}$ root of unity in $F$, are the orthogonalidempotents in $F G_{j}$ for $0 \leq j \leq s-1$.

## If $G$ is Abeliangroup of order $p^{n} q, p$ and $q$ are distinct odd primes

## Theorem

Orthogonalidempotents in group algebra $F G$, where $G$ is an abelian group of order $p^{n} q,(p$ is an odd prime and $q$ is any prime) and $H$ is a subgroup of $G$ of order $p^{m} q$ such that $G / H=<\mathrm{a} H>$ and $F$ is a field of order $p^{n} q \lambda+1$ for some $\lambda>0$, are given by
$S_{i}=\left(\frac{1}{p^{n} q} \sum_{h \in H} h\right)\left(\sum_{j=0}^{\mathrm{p}^{n-m}-1} \alpha^{j j} \mathrm{a}^{j}\right), 0 \leq i \leq \mathrm{p}^{n-m}-1$,
where $\alpha$ is $\left(\mathrm{p}^{n-m}\right)^{t h}$ root of unity in $F$.

## Theorem

If $F$ is a field of order $r$ with $r=p^{n} q \lambda+1$ for some $\lambda>0$ and $G$ is an abelian group of order $p^{n} q$ where $p$ is an odd prime and $q$ is any prime and it has a sequence of subgroups
$G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots \supset G_{n-1} \supset G_{n}=\langle e\rangle$ Such that $\left|G_{i} / G_{i+1}\right|=p(0 \leq i \leq n-1)$. Then, the complete set of orthogonal idempotents in $F G$ is
$\left\{e_{0, i_{0}} e_{1, i_{1}} \ldots e_{n-1, i_{n-1}}\right\},\left(0 \leq i_{j} \leq p\right)(0 \leq j \leq n-1)$
where $G_{j} / G_{j+1}=<\mathrm{a}_{j} G_{j+1}>$ and
$e_{j, i_{j}}=\frac{1}{p^{n-j} q}\left(\sum_{g_{j+1} \in G_{j+1}} g_{j+1}\right)\left(\sum_{k=0}^{p-1} \alpha^{i, k} \mathrm{a}_{j}{ }^{k}\right)$,
$\alpha$ is $p^{t h}$ root of unity in $F$, arethe orthogonalidempotents in $F G_{j}$ for $0 \leq j \leq n-1$,

## Theorem

Let $G$ be an abelian group of order $p^{n} q$ where $p$ is an odd prime and $q$ is any prime and $F$ be a field of order $r$ with $r=p^{n} q \lambda+1$ for some $\lambda>0$. Then, by considering a sequence of subgroups of $G$ $G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots \supset G_{s}=\langle e\rangle$
with the property that $G_{i+1}$ is subgroup of $G$ of smallest order $p^{n_{i}+1} q$ (say), such that $G_{i} / G_{i+1}$ is cyclic. Then, the complete set of orthogonalidempotentsin $F G$ is given as
$\left\{e_{0, i_{0}} \cdot e_{1, i, 1} \ldots e_{s-1, i_{j-1}}\right\},\left(0 \leq i_{j} \leq \frac{p^{n_{j}}}{p^{n_{j+1}}}-1\right)(0 \leq j \leq s-1)$ where $G_{j} / G_{j+1}=<\mathrm{a}_{j} G_{j+1}>$ and
$e_{j, i_{j}}=\left(\frac{1}{p^{n_{j}} q} \sum_{g_{j+1} \in G_{j+1}} g_{j+1}\right)\left(\sum_{k=0}^{p^{n_{j}-n_{j+1}}-1} \alpha_{j}^{i_{i} k} \mathrm{a}_{j}^{k}\right), \alpha_{j}$ is $\left(p^{n_{j}-n_{j+1}}\right)^{t h}$ root of unity in $F$, arethe orthogonalidempotents in $F G_{j}$ for $0 \leq j \leq s-1$.

## Example

Example Consider an abelian group $G$ of group 9. Then, $G$ will have a subgroup $H$ of order 3 and $|G / H|=3$. Let $G / H=<\mathrm{a} H>$. Then,
$e_{0,0}=\frac{1}{9}\left(\sum_{h \in H} h\right)\left(1+\mathrm{a}+\mathrm{a}^{2}\right)$
$e_{0,1}=\frac{1}{9}\left(\sum_{h \in H} h\right)\left(1+\alpha \mathrm{a}+\alpha^{2} \mathrm{a}^{2}\right)$
$e_{0,2}=\frac{1}{9}\left(\sum_{h \in H} h\right)\left(1+\alpha^{2} \mathrm{a}+\alpha^{2}\right)$
are orthogonal idempotents in $F G$, where $\alpha$ is solution of $\mathrm{x}^{3}=1$ in $F$. Also $|H|=3$. Let $H=<b>$. Then, orthogonalidempotents in FH are
$e_{1,0}=\frac{1}{3}\left(1+\mathrm{b}+\mathrm{b}^{2}\right)$
$e_{1,1}=\frac{1}{3}\left(1+\beta \mathrm{b}+\beta^{2} \mathrm{~b}^{2}\right)$
$e_{1,2}=\frac{1}{3}\left(1+\beta^{2} \mathrm{~b}+\beta \mathrm{b}^{2}\right)$

$$
\begin{aligned}
& e_{0}=e_{0,0} e_{1,0} \\
& =\frac{1}{27}\left(\sum_{h \in H} h\right)\left(1+\mathrm{a}+\mathrm{a}^{2}+\mathrm{b}+\mathrm{ab}\right. \\
& \\
& \left.\quad+\mathrm{a}^{2} \mathrm{~b}+\mathrm{b}^{2}+\mathrm{ab}^{2}+\mathrm{a}^{2} \mathrm{~b}^{2}\right)
\end{aligned}
$$

$e_{1}=e_{0,1} e_{1,0}$
$e_{2}=e_{0,2} e_{1,0}$
$e_{3}=e_{0,0} e_{1,1}$
$e_{4}=e_{0,1} e_{1,1}$
$e_{5}=e_{0,2} e_{1,1}$
$e_{6}=e_{0,0} e_{1,2}$
$e_{7}=e_{0,1} e_{1,2}$
$e_{8}=e_{0,2} e_{1,2}$

## References

1. Arora, S.K., Pruthi, M.: Minimal Cyclic Codes of Length $2 p^{n}$, Finite Fields Appl., 5, 177-187 (1999)
2. Berman, S. D.: On the Theory of Group Codes, Kibernetika, 3, No. 1, 31-39 (1967)
3. Berman, S. D.:Semisimple cyclic and abelian code, II, Cybernatics, 3,17-23 (1967)
4. Blake, I. F., Mullin, R.C.: The Mathematical Theory of Coding, Academic Press, New York (1975)
5. Burrow, M.: Representation Theory of Finite Groups, Academic Press, New York (1965)
6. Ferraz, R. A., Milies, C.P.: Idempotents in group algebras and minimal abelian codes, Finite Fields Appl., 13, 382-393 (2007)
7. Perlis, S., Walker, G.: Abelian group algebras, Trans. Amer. Math. Soc. 68, 420-426 (1950)
8. Pruthi, M., Arora, S.K.: Minimal Codes of Prime-Power Length, Finite Fields Appl., 3, 99-113 (1997)
