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Abstract Let (X,, n=>1) be a discrete - parameter Stationary Gaussian process with E (X;)=0, EX?=1forall I and E (X; X;,n)=r(n).
Let (Y, n=1) be an independent copy of (X, n=1). Let My,,= max (X; X5,....Xy,), Mpp=max(¥; Y5,....1,), Un_(Mu‘;—bn)

and Vn=(M2:‘l—_b") where b,= (2logn)/? and a,,=(log log n)(2 logn) /2. Let (n; ) be a subsequence of positive integers

that is at least geometrically fast. Under the condition that either (log n)**¥r(n)=0(1) as n— oo for some y >0 or
X52172(j) < oo the set of all almost sure limit points of the vector sequenc e { U, = Wl:—_bn) WV = @} is

n n

obtained.
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INTRODUCTION
Let (X,, n>1) be a discrete - parameter Stationary Gaussian proc ess with E(X;)=0, EX? =1 for all I and E (X; X;,,)=t(n).

Let (Y, n=1) be an independent copy of (X, n=1). Let My,= max (X X,,....Xp,), Myp=max (Y1 Y,,....Yy), UnM

an

and V,=222=22) wwhere b,= (2logn)"/ and a,~(log log n)(2logn)~*/2. Pickands (1969) established that if either

n

(logn)®*r(n) — 0 as n— oo for some a >0 or Z;’;lrz(j) < oo then almost surely, as n— oo lim sup U, = % and lim inf

U= - % Mittal (1974) showed that the above results continue to hold if the condition (logn)®r(n) — 0 as n— oo for
some a >0 is replaced by the weaker condition (logn)%r(n) =O(1) as n— oo for some a >0. Vishnu Hebbar (1980)
obtained the almost sure limit set of (Uy, V, ) when either (logn)*r (n) =O (1) as n— oo for some y >0 or Z;’;lrz(j)
< oo, Let (n;) be a subsequence of positive integers with nj;, — oo
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ask — oo It is said to be at least geometrically fast if lim sup (nnk )< 1. Vasudeva and Savitha (1995) established the
k+1

law of the iterated logarithm for (Unk) In this paper, we extend their result to the vector case by finding the almost sure
limit set of (Unk, nk) Almost sure limit points of random vectors with independent components have received
considerable attention in literature. One can refer the papers by LePage (1973), Pakshirajan and Vasudeva (1977),
Strassen (1964), Nayak,S.S. (1984, 1985, 1986, 1988,1994,2000 and 2001) and the references therein. Throughout the
paper, const. stands for a positive constant which may have different values at different appearances. “infinitely often” is
written as 1.0.

PRELIMINARIES

Let (ny) be a subsequence of positive integers such that n;, — oo as k = oolim and
lim sup ( T )< 1.
Nk+1

Lete*= inf{s: Y (logn,)~E+1/2) < 00}. For - % <x; < &, 1=12 with -1< x;+x, < &g*- % , let ng=ny, ;) where u(k)=

_r 1
[k 1+x1+XZ] and [x] is the greatest integer < x. Let m;= [n;‘c (logk) ™~ 5]. Let us define the events Fj,

:{maxn;—mk+1sjsn,*( Xj > dn,*((xl)} and Gy, :{maxn,”(—mk+15jsn; Y] > dn; (xz)} where

dy; (X) =ap; xtby; . When r(n)=0, the corresponding events are respectively denoted by Fy and Gy.

Lemma 2.1 (Vasudeva and Savitha, 1995): Assume that either (logn)*"r(n)=0(1) as n— oo for some y >0 or
Y3217%() < 0. Then lim sup Uy, =" as.

Lemma 2.2 (Vasudeva and Savitha, 1995): Assume that either (logn)1*?r(n)=0(1) as n— oo for some y >0 or
X1 72(j) < 0. Then for any subsequence (vy) of positive integers with limy_,, v,=0 we have lim inf Up,= - % .

Lemma 2.3: Let 0<a<ﬂ and
1+6

A (k)=X m"]lr(l)l (my = (A —Tz(j))_l/zeXp{—

Then 52, P(Gi)A; (k) <o0.
Proof: Stationarity 1mplles SUPps1lT(M) =8 (0 < 6 < 1). We have

4,3k < (const.)(n})” 1+s(lognk) 1+62[ "Eim — fexp{— = (2logn;, + 2x; loglogmy) + o(1))
<(const.) m**t1(ny)” 1+8(lognk) 1+8,k> k1

« 2x
<(const.)(log k)_% (logng)™ ;}s(n;)aﬂ—

drzl;;(xﬂ
@+lr(Hb

}where SUpps1lr(m)|=6 (0 < 6 < 1).

k> k.

1+68°
Also, P(Gg)=1 - g™k (dn*(x2)> where @ is the d.f. of a standard normal random variable.
k

~ 1 exp{mk log{l - <1 -0 (dn}’f"z))>}}

=1- exp{—m;c (1 - (Z)( *(xz))> (1 + 0(1))}
<(const.)(log k) ~'/2 (logn};)~*2*1/2) k> k, by the tail behavior of the standard normal distribution.
Let N=max(k4, k,). Then
Yhe NP(GR)A (k) < (const W= (log k)_ 2 (nk) 9 (logn},)~# where 8 = A 1>0
and f§ = m Xy + 5 .
< (const.) Y% v(n:)~? (logn;)~F
= (const.) ¥ e~®1o8Mk (Jogn;) P
<(const.) X%y (logny) @A) where 1 > max(1,1 + x; + x, — ) is an integer.
1
Since lim supnn—k <1, we have nj;> (const.)a*® for k > k5 where a>1 and u(k)= [k1+x1+x2]. Hence Y;7_y P(G)A (k) <
k+1

_ B
(const.)+ (const.)YgLy, k 1x1+xz <co.
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Lemma 2.4: Let 0<a<g where sup,s1|r(n)|=6 (0 < § < 1). Let supys,|r(k)|=6(n) and
d? (1)
— mg—1 . _ 201\ —1/2 ny .
A, (k) Z a]+1|r(])| (my, — HA —=r=()) exp{ —(le(m)} . Assume that either
(log n)“yr(n)—O(l) as n— oo for some y >0 or Y72, 72(j) < o0. Then Yi7_; P(G)A, (k) <oo.
Proof: First let (logn)**"r(n)=0(1) as n— o for some y >0. Then (logn)*" §(n)=0(1) as n— o for some y >0. Now
2 2

A, () < (const)S(mE)(1 — 62)~2(ng) 00 (logny) Um0 ¥™ L (my-j) k= kg

j=[mgl+1
2 _ 2X1
< (const.) 8(m) m (n) **("8) (logny) ™) k> ks
le
< (const.) 5(my) m26(m")(log k)i (logny) -~ 1rs(mf) , k> kg since my~nj (logk)~'/?as k— oo.

2x1

=(const.) §(my) (log k)‘s(mk)(log ny) () exp{26(my) logm; }, k= kg

<(const.) (logmy)~ "~ (log k)*(m&) (log n;, )_ wa(mf) k> k, since §(m§)(logm)1* =0(1) as k— oo.

Since lim sup— < 1, we have nj;> (const.)a*® for k large where a>1 and u(k)= [kl+x1+x2] This implies that %
N+ k
- 0ask - oo. Hence log m;, ~logn;, as k —» oo. Hence
2X1

a - YV
A, (k) <(const.) (log k)S(mk)(log ny) 1+5(mf) L k= kg.
Also, P(G;)<(const.)(log k)2 (lognj)~*2+1/2) for large k by the tail behavior of the standard normal distribution.
Hence

a —Lla—x -y—-3/2
P(Gi)Az(k)<(const.) (logk)*(™)-1/2(logmy) =+"8) ™" © k> k.
a —+x +y+3/2 |/(1+x1+x3)
<(const.) (log k)S(mk)'l/zk wro(mft) t ,k >k, since lim sup <1 implies
Nk+1

1
ng> (const.)a*® for k large where a>1 and u(k)= [k 1+X1+x2].

Note that (logn)*? §(n) =0(1) as n— oo for some y >0 implies §(my) — 0 as k— oo,

x1+y+1/2

Let 0<g;< . This is possible since x; > — Zand 1+ xq1 + x, > 0. Hence
141 +%, 2

2x1+x2+y+3/2

Y1 P(Gp)Az(k) < const. +(const )Y 5L, (log k)#1~1/2 k(gl_ 141402 ) <00,
Now let 31724 72(j) < . By Cauchy-Schwarz inequality we have

(A2 (k) <7 Ly T2 () D ey (i = NP (L =12 () X

1 1 %2
exp{_m{Z logny, + 2x; loglogn;, + x ZM}}

2loglogn,
<(const.){X% 1rz(l)}(nk) w45 mk) (logn;) *00) Z] [ma]+1(mk N k= kyy
< (const (T2, r2(D} () 0 )(1ogn) 14308 m3 k> kyp,
< (const.){Z% 1r2(1)}(nk) 1+5(mk) (logk) 3/2 (logn ) -~ re(mf) , k > ky5 since my= [nk(logk) ]

2Xx
Hence A,(k) < (const. ){21 REO) 1+6(mk) (logk)~3/* (logn},) “8(':1’() Jk>kqs
<(00n5t-){2j:1 2(1)} ( j)E 2 (log k) 3% (logni ) &1 | Kk = kyy ,0<€; <
since §(my) - 0 as k — oo.
<(const.){2j‘;1r2(j)}1/2 (logn;)€~2*1 exp{—0logn;}, k = ky5 where = %— €.

<(const.){2}’-‘;1 7”2(j)}1/2 (logn;)€1=2*17t 'k > k5 where | is an integer such that
1= max(1,e" + & — 2x; — x3).

1/2
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Also P(Gy)<(const.)(log k)~1/2 (logn})~*2*1/2) for large k by the tail behavior of the standard normal distribution.
Hence,

S P(G)Ax()< (comst.) + (const.) {32, 72()}"* Ty, (lognj)e1=2x1-1-%-1/2 <oo,

Lemma 2.5: Let I}, be the indicator function of the event E;. Assume that (logn)!*¥r(n)=0(1) as n— o for some y >0.
Then sup, | Y. Y n<k<i<n COV(Ii , I;)|<oo where N is a large positive integer.

Proof: We have for k<,

Cov(ly ,1;) =E(I1;) — E(ly) E(})

=P(Fi, N F}) P(G, N Gy) - P(Fy) P(F) P(Gy) P(Gy)

={P(F N F) = P(FOPFRI{P(Gk N G)) = P(GP(G)} + P(G)P(GY))

+P(F) P(F) {P(Gy N G;) — P(Gy) P(Gy)}. Therefore

[Cov(ly, 1)) | < {|P(F, N F) — P(FIP(FDIXIP(Gy N G)) — P(GR)P(GI}

+ P(G)P(GO{IP(F, N F) — P(FP(FDI} + P(Fy) P(FD{IP(Gk N G,) — P(G)P(GI}- (2.1
By Qualls and Watanabe (1971) we get
[P(F N F) — P(F)P(F)I=IP(F¢ N Ff) — P(FOPF)| (2.2)

< ZZZI vafllrl ) 01 q)(dn;( (x1) , dpy (x1): Ar)dxl where @ (u, v, p) is the standard bivariate normal density with correlation
coefficient p and r=r(n; — m; + u — nj + m;, — v). Since (logn)**"r(n)=0(1) as n— oo, we have

(logn)1*Y §(n)=0(1) as n— oo where supysn|r(k)|=6(n). Stationarity of X,,’s and the condition on r(n) ensure that
6(1) < 1.

Let lim sup n:l" = a(0<a<1). Hence, noting that % - 0 asl — oo, we have,
k+1 1

n; —m; + p —n, +my, —v = (const.)n; forl large.
Therefore|n; —m; + u — nj + my, —v| < §((const.)n;) < (const.) (logn;)~1~7 for large k and 1 such that [>k=>
N, N being a sufficiently large positive integer.

Note that
@(dp; (1) dpy (x1): A7) < (2m)71 ((1 B 6(1)))_1/2 y
exp{=2 (g (e0) = 21rldng G )y () + ()} 03)

< (const.) exp{— % (dniz(xl) +(1- 2|r|)dn;2(x1))} because dn; ‘s are monotonically increasing in j.

< (const)(n) " (log ny,) ™1 (n; (log nj) )~ (1=28(Cconstmi )

=(const.)(n;) " t(logni) ™1 (n)) " 1(logn;)~* exp{28((const.)n; )(logn; + x; loglogn;)}

< (const.)(ny,) " t(logng) ™1 (n)) " *(logn;) ™ exp{2(const.)(logn;) 1Y (logn; + x; loglogn;)}
since (logn)1*Y §(n)=0(1) as n— co.

< (const)(n},)~*(log n},) 1 (n}) " (log n}) 1 .

Hence the R.H.S of (2.2) can be majorized by

(const.) mm; §((const.)n; )(ny) t(logn;) > (n;) (logn;) ™ (2.4)
< (const.)(logk)~*/2(log )~*/?(log n;;) * (log nj) ~*1~¥~1

Similarly |P(Gy N G;) — P(G,)P(G,)| can be majorized by an expression which is obtained from (2.4)
By replacing x; by x, . Hence the first term of R.H.S of (2.1) is

< (const.)(logk)~*(log ) "*(log n})~*1+x2) (log n}) =1 +x2+2r+2)

< (const.)(log k)~ *(logn}) =1 +x2*r+D(Jog [)~1(log n}) ~F1+xz+r+1)

The second term of (2.1) for large I> k > N large is

< mP(Yy > duy (12) ) my P(Yy > dy; () ) {IP(Fi 0 F)) = P(FOP(RDIY

<(const.) mm;(logk)~3/2 (log )~ (log n},)~¥1+*2+1/2) (Jog n} ) ~(*1+x2+y+3/2)

<(const.) (log k)~ *(log n})~C1+*271/2) (Jog n}) ~(Fa+¥x2+v+3/2)

<(const.)(log k)~"*(logn})~*1+*2*¥/2+D(og [)~1 (log n}) ~Frt+¥*2+¥/2+1)

The third term of (2.1) is bounded by the same expression as the second. From these bounds the proof the lemma is
complete.

Lemma 2.6: Let I, be the indicator function of the event E. Assume that Y72, 72(j) < c0. Then
Sup, Y Y n<k<icn Cov(y , I;)|<oo where N is a large positive integer.
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Proof: We have
[Cov(I) , )| < [P(G N G) — P(G)P(G)|+IP(F N F) — P(F)P(F))|
my - 1 1
< Zu_l Zu_lm f @(dp; (1), dy (x1): Ar) A2 + f @(dp; (x2) , di; (x2): A7) d2
0 0
by lemma 1.5 of Qualls and Watanabe(1971) where r is defined at (2.2) of the proof of lemma 2.5.
The above expression can be majorized by

Sty Sl (exp {3 (dn 2 Ge0) + (1 = 217D Ge) )} + exp{—3 (dny” (r2) + (1 = 2D () )} ) 25)
(c.f. (2.3) of the proof of lemma 2.5)

As in (2.2) of the proof of lemma 2.5, we have n; — m; + u — nj, + my, — v = (const.)n; for I large.

Since r(n)— 0 as n— oo, we get

[t=r(ny —my + u—ny + my, —v)| < & forl>k > N where £>0 is sufficiently small. Hence (2.5) can be majorized by

(exp{~5 (200 + (1 = 202G} + exp 5 () + (1 = 20} x

Z,T:ll Yoy Ir(nf —my + p = n +my —v))| (2.6)
By Cauchy-Schwarz inequality

my mg
E E lr(n; —my + u—ng + my —v)|
u=1 v=1

m m N 1/2
1/2 E ¢ E k . .
=m < [r(ny —ml+,u—nk+mk—v)|)
p=1 v=1

1/2_1/2 1/2
1

my/? (St Sk v2 (nf = my + = i+ my =)
1

1 =
< mimy (Z}’-‘;l r? (j))2 since

m mg
Z Z r2(nj —m;+u—nj +my —v)
u=1 v=1

=ZL"=’1(r2(nf —mtp—n+m— 1)+ A2 —my 4+ — 1))

1
<my (Z2.r2 G’
Thus (2.6) is bounded by
1
(const.) memy, (ni) ™ ()~ 729 ((logni) 2(log n;) " 729%2 + (logny) ™ (logny) ~(1729)%1)
This complete the proof of the lemma.

<m

THE MAIN RESULT
Theorem 3.1: Assume that either (logn)**¥r(n)=0(1) as n— oo for some y >0 or X1 r2(j) < . Let (1) be any

Nk

subsequence of positive integers such that n;, — coas k— oo and lim sup <1. Then the set of all almost sure limit

Nk+1

points of (Unk, Vnk) is

S, ={(x1 X)) — % <xp xp < % X x, <€ — %} where e* = inf{e: Y(logn;)~¢+1/?) < oo},

The proof of the theorem is based on the following three lemmas. Let ny, m;, , F;, and Gy, be as in section?2.
Lemma 3.1: For all x4, x5, > - % and for all € > 0, we have

(1) P(Un; >x1+ 6V > x; i.o.) =0 and (ii) P(Un; >x1, Vg > x2 + € i.o.) =0

Proof: Since Uy and V,: are independent,

P(Up, > x1+ €V > %)=P(Upny >x, +€) PV >x3)

< n;;zp(x1 > dyy, (r1+€)) P(Yy > diy (xz))

~(const.)(logn)~(1+¥1+x2+8) 35 k— oo, using the known result
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2
1-0(x) ~(2m)~/?x~ exp(— —) as x— oo for the standard normal distribution function @. Since lim sup —% < 1,

Nk+1
1

we have n, > a*, 0<a<1 for k large. Hence logn}, > (const.)u(k) for k> k, where u(k)= [k1+x1+XZ] and [x] is the
greatest integer < x. Thus )}, P(Un; >x;+€ Vi > xz) < o0. An application of the Borel-Cantelli lemma
completes the proof of (i). Proof of (ii) is similar.
Lemma 3.2: Assume that either (logn)**"r(n)=0(1) as n— oo for some y >0 or Y72, %(j) < oo.
Forall x; x;, > — %with X +x, <" — %, we have
P(Up; > x1,Vy > x0.0.) =1.

S 1
Proof: Recall that let ng=ny, ) where u(k)= [k 1+X1+x2] and [x] is the greatest integer < x, my= [n}'; (logk) _5], Fy
:{Inaxn}i,—mk+1sjsn;‘c Xj > dn;;(xl)}anda
Gy ={ma)(n;;_mk+1S jsni Vi > dpy (xz)} where dyr (X) =ap: x+by: . When r(n)=0, the corresponding events are
respectively denoted by Fy and Gy,. Define Ej, = Fj, N Gy, . Observe that E; C {Un;( > x1, Vi > xz}. Hence the lemma
will be established if we show that

P(Ej i.0.)=1. (3.1

This in turn will follow when we show as n— oo that

E(J,) = o and (3.2)
In ) .

TR 1 in probability 3.3)

where J,,=>.)_y I for sufficiently large N, I, being the indicator function of Ej.
In order to establish (3.2) consider

P(Ey) — P(Ex)=P(F)P(Gy) — P(Fy) P(Gy) (3.4)
=P(F){P(Gr) — P(Gp)} + P(GR){P(F) — P(Fy)}.

Therefore

|P(Ey) — P(ER)| < P(F)IP(Gr) — P(G)I+ P(Gi) IP(F) — P(Fi)| = Ay say. (3.5)
Observe

From the tail behavior of @(x)(d.f. of standard normal r.v.) that

(a) P(Ey) < mkP(X1 > dn;(xl)) ~ (const.) (log k)~2(logn})~*1*1/2as k— oo.

(b) P(F;)=1—@™k (dn;;(xl))= 1—exp {mk log{l - (1 -0 (dn;;(xl)))}}

=1—exp{—mk <1 -0 (dn;;(xl))) 1+ 0(1))} ~ (const.)(logk)~1/2(log nj) ~*1+1/2as k— oo, whenever x;> —%.
Similarly P(Gj)~ (const.) (logk)~*/?(logn;)~*2*1/2as k— oo, whenever x,> — %

(2) By lemma 3.1 of Berman (1964)

IP(F) = P(EOIHP(FY) = P(F{)| < @) E7 1r (D] (mue = (A =2 ())
exp{~d;;* (x)) /(1 + [r (DD}

and similarly |P(Gy) — P(Gp)| < (2m)~ ka 1|r(])| (my — ])(1 - rz(]))
exp{—di.”(x2) /(1 + Ir (D}

By lemma 2.3 and lemma 2.4 we get Y5y A < o0 whenever either (logn)1*¥r(n)=0(1) as n— o for some y >0 or
Y1 r2(j) < oo,
Further P(F}) P(G;)~ (const.)(logk) ™" (lognj)~C1+%2+1) a5 k— oo,

1

1/2

1/2

Since lim sup nn—k <1, we have log n; > (const.) k*+x1+xz for large k. Hence
k+1

P(F}) P(Gy)~ (const.)(logk)™! k=1 as - oo. Thus ¥, P(Fy) P(Gj) < 0. Hence from (3.5), (3.2) follows.
By Chebycheff’s inequality we have
VUn)  _ EeenVUi)+2E Ensk<izn CoV Ui 1)
P( EJn 1| ) — (e2(EJn)?) £2(EJy)? (36)
Clearly YX5_n V(1) < Yoy E(I) = o(EJ,)? as n— oo. Hence (3.3) will be established if we show
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SupL Y Y n<k<icn Cov(Iy , I;)|<co where N is a large positive integer. But this follows from lemma 2.5 and lemma 2.6.
Hence the proof of the lemma is complete.

Lemma 3.3: For all x; ,x, > — % with x;+x, = €* — % and for all € > 0 we have

P(Up, >x1+ €,V >x,+ € 1.0 ) =0.

Proof: Since Uy, and Vy,_are independent, we have

P(Unk>x1+ s, Vnk>x2+ € ): P(Unk>x1+ S) P(Vnk>x2+ S)

<nj P(X; > dy, (x11 €)) P(Yy>d,, (1 €) )

< (const) nZ (dpn, (%1 + &) (dn, xz + e)‘lexp[—§ d3, (1 +€) — =2 d2, (xz + £)}. k= kyby the tail behavior of
the standard normal distribution.

< (const.)(log ) 1+*1¥%2+2€) Hence ¥ P(Up, > %3 + & Vy > x; + £) <00

Since % +x;+x,+2e>€"asx; +x, =€ — % An application of Borel-Cantelli lemma completes the proof.

Proof of theorem 3.1: From lemmas 2.1 and2.2 it is clear that the limit set of (Unk, Vnk)is contained in the square

{(xl,xz) D= % < X,% < 6*}. It follows from lemma 3.3 that the limit set is contained in S,,.

We conclude from lemmas 3.1 and 3.2 that every point of S, except the point (—% ,— é ) is a limit point. That the point

(1
2’ 2

2 ) is also a limit point follows from continuity considerations.
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