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INTRODUCTION 
Progressive Type II right censored sampling is an important method of obtaining data in life

out by Rita Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, 

removed early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored 

sample, derived the BLUE’s for the parameters of one

also derived MLE’s and shown that they are simply the BLUE’s, adjusted for their bias. Let us consider the following 

general progressive Type II right censoring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected 

units were placed on a life test; the failure times of the first r units to fail were not observed ; at the time of the (r+1)

failure, Rr+1 number of surviving units are withdrawn from the test randomly, and so on; at the time of the (r+i)

Rr+i number of surviving units are randomly wit

remaining Rn = N – n – Rr+1 – Rr+2 –... – R

times of the completely observed units to fail, and R
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In this paper, by assuming that a general progressive Type II right censored sample, we obtain Q

′ based on the general Type II progressive right censored sample. Further MRE estimator of 

is obtained with respect to Linex type loss function. These geralize the results of Ch

e Type II right censored sample. The paper is organized as follows: Section 3 deals with the problem of Q

MRE estimators for the vector parameters. In the last Section, we consider the problem of equivariant estimati

vector parameter under Linex loss function( Varian,1975). 
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Progressive Type II right censored sampling is an important method of obtaining data in life-testing studies. As pointed 

out by Rita Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, 

removed early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored 

sample, derived the BLUE’s for the parameters of one-and two-parameter exponential distributions. For the later, they 

and shown that they are simply the BLUE’s, adjusted for their bias. Let us consider the following 

general progressive Type II right censoring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected 

e times of the first r units to fail were not observed ; at the time of the (r+1)

number of surviving units are withdrawn from the test randomly, and so on; at the time of the (r+i)

number of surviving units are randomly withdrawn from the test ; finally, at the time of the n

Rn–1 are withdrawn from the test. Suppose Xr+1:N ≤ Xr+2:N

times of the completely observed units to fail, and Rr+1, Rr+2,... , Rn are the number of units withdrawn from the test at 
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estimation 

scale using general 

sample, we obtain QA-MRE estimators for 

based on the general Type II progressive right censored sample. Further MRE estimator of 

ts of Chandrasekar et.al. (2002) for 

: Section 3 deals with the problem of QA-

MRE estimators for the vector parameters. In the last Section, we consider the problem of equivariant estimation of the 
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testing studies. As pointed 

out by Rita Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, 

removed early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored 

parameter exponential distributions. For the later, they 

and shown that they are simply the BLUE’s, adjusted for their bias. Let us consider the following 

general progressive Type II right censoring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected 

e times of the first r units to fail were not observed ; at the time of the (r+1)
th

 

number of surviving units are withdrawn from the test randomly, and so on; at the time of the (r+i)
th

 failure, 

hdrawn from the test ; finally, at the time of the n-th failure, the 

r+2:N ≤.... ≤ Xn:N are the life-

are the number of units withdrawn from the test at 
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these failure times, respectively. It follows that 
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with the pdf f and the distribution function F, then the joint pdf of ( Xr+1:N, Xr+2:N,.... , Xn:N ) is given by 
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LOCATION- SCALE MODEL 
In this case, the common pdf is taken to be 
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Note that the above pdf belongs to a location – scale model. We are interested in deriving QA-MRE estimator as well as 

the MRE estimator based on Linex loss function for the vector parameter 
( )'.,τξ

  

 

QUADRATIC TYPE LOSS FUNCTION 
If the loss function is of the quadratic type, then by the simultaneous equivariant estimation approach of Edwin 

Prabakaran and Chandrasekar (1994), let us consider the problem of estimation of 
( )'.,τξ

 Consider 

( ) ( ) ( )( ) ,', 02010 XXX δδδ =
 

where
( ) NrXX :101 +=δ

and
( ) .:1:02 NrNn XXX +−=δ

Here 
( )X0δ is an equivariant estimator and 

( )', ::1 NnNr XX +  is a 

sufficient statistic but not complete. In order to find 
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consider the transformation 

Nrr XZ :11 ++ =
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and 
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so that 1:1 ++ = rNr ZX
, 21: ++ += rrNn ZZX

 

and 
.,...,3,21:1 nriZZZX irrNi +=+= ++−  

The Jacobian of the transformation is given by 

  
.2
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+= rn

rZJ
 

Thus the joint pdf of 
( )nr ZZ ,...,1+ is given by 
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Also the joint pdf of 
( )nr ZZ ,...,3+ is given by  
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Thus the conditional pdf of 
( )21, ++ rr ZZ

 given 
( )nr ZZ ,...,3+  is given by 
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Remark3.1: if r=0 and Ri=ri then the above estimator reduces to the one in simultaneous Equivariant estimation of the 

parameters of a Uniform Location- Scale model based on progressive Type-II right censored sample case (Leo 

Alexander, 2000).  

 

LINEX LOSS FUNCTION 

Following Varian (1975), the MRE estimator of 
( )',τξ

under Linex loss function, is provided. We have 
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Therefore the MRE estimator of 
( )',τξ

is given by 
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Remark 4.1: If r=0 and 
,,...,2,1, nirR ii ==
then the above estimators reduce to those obtained in (Leo Alexander, T, 

2000). 
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