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Abstract In this paper, the reflection and transmission of plane waves from imperfect interface separating a micropolar viscoelastic 

solid half space and a fluid saturated incompressible porous solid half space is studied. A longitudinal wave (P-wave) or 
transverse wave (SV-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted 
waves have been obtained with help of boundary conditions at the interface. Then these amplitude ratios have been 
computed numerically for a specific model and results thus obtained are shown graphically with angle of incidence of 
incident wave. It is found that these amplitude ratios depend on angle of incidence of the incident wave, imperfect 
interface as well as on the properties of media. From the present investigation, a special case when fluid saturated porous 
half space reduces to empty porous solid and micropolar viscoelastic solid half space reduces to micropolar elastic solid 
has also been deduced and discussed with the help of graphs.  
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INTRODUCTION 
Most of natural and man-made materials, including 
engineering, geological and biological media, possess a 
microstructure. The ordinary classical theory of elasticity 
fails to describe the microstructure of the material. To 
overcome this problem, Suhubi and Eringen (1964), 
Eringen and Suhubi (1964) developed a theory in which 
they considered the microstructure of the material and 
they showed that the motion in a granular structure 
material is characterized not by a displacement vector but 
also by a rotation vector. Gautheir (1982) found 
aluminum-epoxy composite to be a micropolar material. 
Eringen (1967) developed the linear theory of micropolar 

viscoelasticity. Many researchers discussed the problems 
of waves and vibrations in micropolar viscoelastic solids. 
Based on the work of Fillunger model (1913), Bowen 
(1980) and de Boer and Ehlers (1990a, 1990b) developed 
an interesting theory for porous medium having all 
constituents to be incompressible. Based on this theory, 
many researchers like de Boer and Liu (1994, 1995), Liu 
(1999), Singh (2002), de Boer and Didwania (2004), 
Kumar and Barak (2007), Kumar and Hundal (2007), 
Kumar et.al. (2011) etc. studied some problems of wave 
propagation in fluid saturated incompressible porous 
media. Elastic waves propagation in fluid saturated 
porous media has its importance in various fields such as 
soil dynamics, hydrology, seismology, earthquake 
engineering and geophysics. Imperfect interface 
considered in this problem means that the stress 
components are continuous and small displacement field 
is not. The values of the interface parameters depend 
upon the material properties of the medium. Recently, 
using the imperfect conditions at the interface, Chen et.al. 
(2004), Kumar and Chawala (2010), Kumari (2014) etc. 
studied the various types of wave problems. Using the 
theory of de Boer and Ehlers (1990) for fluid saturated 
porous medium and Eringen (1967) for micro polar 
elastic solid, the reflection and transmission phenomenon 
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of longitudinal and transverse waves at an imperfect 
interface between micropolar elastic solid half space and 
fluid saturated porous solid half space is studied. A 
special case when fluid saturated porous solid half space 
reduces to empty porous solid half space has been 
deduced and discussed. Amplitudes ratios for various 
reflected and transmitted waves are computed for a 
particular model and depicted with help of graphs and 
discussed accordingly. The model which is considered 
here is assumed to exist in the oceanic crust part of the 
earth and the propagation of wave through such a model 
will be of great use in the fields which are related to earth 
sciences.  
 
BASIC EQUATIONS AND CONSTITUTIVE 
RELATIONS 
For medium 퐌ퟐ (Micropolar viscoelastic solid) 
Following Eringen (1967), the constitutive and field 
equations of a micropolar viscoelastic solid in the absence 
of body forces and body couples, are as under  
 t = λu , δ + μ u , + u , + κ u , − ϵ ϕ      … (1) 
 m = αϕ , δ + βϕ , + γϕ ,                                        … (2) 
 (c + c )∇(∇.퐮)− (c + c )∇ × (∇ × 퐮) + c ∇

× 흓 = 퐮̈                                                … (3) 
 (c + c )∇(∇.흓)− c ∇× (∇ × 흓) +ω ∇× 퐮

− ퟐω 흓 = 흓̈                                     … (4) 
where 

 c =
(λ + 2μ)

ρ
 ;   c =

μ
ρ

 ;  c =
κ
ρ

 ;  

 c =
훾
휌푗  ;   c =

(α + β)
ρj  ;   ω =

κ
ρj  ; 

 λ = λ∗ + λυ
∗ ∂
∂t  ;  μ = μ∗ + μυ

∗ ∂
∂t  ; 

 κ = κ∗ + κυ∗
∂
∂t  ;  훼 = α∗ + αυ∗

∂
∂t  ; 

 β = β∗ + βυ
∗ ∂
∂t  ;  γ = γ∗ + γυ

∗ ∂
∂t  ; 

 ∇= 푖
∂
∂x + 푘

∂
∂z                                                         … (5) 

 λ∗,μ∗, κ∗, α∗, β∗, γ∗, λυ
∗,μυ

∗, κυ∗, αυ∗ , βυ
∗ and γυ

∗ are 
material constants, 휌 is the density and j the rotational 
inertia. 퐮 and 흓 are displacement and microrotation 
vectors respectively. Superposed dots on right hand side 
of equations (3) and (4) represent the second order partial 
derivative with respect to time.  
Taking 퐮 = (u, 0, w) and 훟 = 0, ϕ , 0  and introducing 
potentials ϕ(x, z, t) and ψ(x, z, t) which are related to 
displacement components as  

 u =
∂ϕ
∂x +

∂ψ
∂z  and w =

∂ϕ
∂z −

∂ψ
∂x                                   … (6) 

With the help of displacement components given by (6) in 
(3) and (4), we get 

 ∇ −
1

 (c + c )
∂
∂t ϕ = 0                                    … (7) 

 ∇ −
1

 (c + c )
∂
∂t ψ− pϕ = 0                        … (8) 

 ∇ − 2q −
1

 c
∂
∂t ϕ + q∇ ψ = 0                        … (9) 

 where 
 p =

μ
μ + κ

 ;  q =
κ
γ

                                                         … (10) 

Assuming the time variation as  
 ϕ(x, z, t) = ϕ(x, z) exp(iωt) 
 ψ(x, z, t) = ψ(x, z) exp(iωt) 
 ϕ (x, z, t) = ϕ (x, z) exp(iωt)                                    … (11) 
Using (11) in (7) to (9), we obtain 
 ∇ + ω /V ϕ = 0                                               … (12) 
 (∇ + ω B∇ + ω C) ψ,ϕ = 0                              … (13) 
where 

 B =
q(p − 2)

ω
+

1
(c + c ) +

1
c  

 C =
1

(c + c )
1

c −
2푞
ω

                                       … (14) 

and  V = c + c                                                      … (15) 
In an unbounded medium, the solution of (12) 
corresponds to modified longitudinal displacement wave 
(LD wave) propagating with velocity V . 
Writing the solution of (13) as 
  ψ = ψ + ψ                                                                   … (16) 
where 
 ψ  and ψ  satisfy 
 ∇ + δ ψ = 0                                                         … (17) 
 ∇ + δ ψ = 0                                                         … (18) 
and 
 δ = λ ω  ;  δ = λ ω                                         … (19) 

 λ =
1
2 B + B − 4C  ; 

 λ =
1
2 B − B − 4C                                              … (20) 

From (8) we obtain 
ϕ = Eψ + Fψ  

where E =
ω δ

 ;  F =
ω δ

              … (21) 
Thus there are two waves propagating with velocities 
λ  and λ , each consisting of transverse displacement 
ψ and transverse microrotation ϕ .Following Parfitt and 
Eringen(1969), these waves are modified coupled 
transverse displacement wave and transverse 
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microrotational waves (CD I and CD II waves) 
respectively. 
For medium 퐌ퟏ (Fluid saturated incompressible 
porous medium): Following de Boer and Ehlers (1990b), 
the governing equations in a fluid-saturated 
incompressible porous medium are  
 div(η 퐱̇ + η 퐱̇ ) = 0                                                 … (22) 
 div퐓퐄퐒 − η  grad p + ρ (퐛 − 퐱̈ ) − 퐏퐄퐅 = 0,          … (23) 
 div퐓퐄퐅 − η  grad p + ρ (퐛 − 퐱̈ ) + 퐏퐄퐅 = 0,          … (24) 
where 퐱̇  and 퐱̈  (i = S, F) denote the velocities and 
accelerations, respectively of solid (S) and fluid (F) 
phases of the porous aggregate and p is the effective pore 
pressure of the incompressible pore fluid. ρ  and ρ are 
the densities of the solid and fluid phases respectively and 
b is the body force per unit volume. 퐓퐄퐒 and  퐓퐄퐅 are the 
effective stress in the solid and fluid phases respectively, 
퐏퐄퐅 is the effective quantity of momentum supply and  η  
and η  are the volume fractions satisfying 
  η + η = 1                                                                   … (27) 
If 퐮  and 퐮  are the displacement vectors for solid and 
fluid phases, then 
 ẋ = 퐮̇ , 퐱̈ = 퐮̈ , 퐱̇ = 퐮̇ , 퐱̈ = 퐮̈                         … (28) 
The constitutive equations for linear isotropic, elastic 
incompressible porous medium are given by de Boer, 
Ehlers and Liu (1993) as 
 퐓퐄퐒 = 2μ 퐄 + λ (E . 퐈)퐈,                                            … (29) 
 퐓퐄퐅 = 0,                                                                            … (30) 
 퐏퐄퐅 = −퐒 (퐮̇ − 퐮̇ ),                                                    … (31) 
where λ  and μ  are the macroscopic Lame’s parameters 
of the porous solid and 퐄  is the linearized Langrangian 
strain tensor defined as  

 퐄 =
1
2

(grad 퐮 + grad 퐮 ),                                    … (32) 
In the case of isotropic permeability, the tensor 퐒  
describing the coupled interaction between the solid and 
fluid is given by de Boer and Ehlers (1990b) as 

 퐒 =
(η ) γ

K 퐈,                                                            … (33) 
where γ  is the specific weight of the fluid and K  is the 
Darcy’s permeability coefficient of the porous medium. 
Making the use of (28) in equations (22)-(24), and with 
the help of (29)-(32), we obtain 
 div(η 퐮̇ + η 퐮̇ ) = 0,                                               … (34) 
 (λ + μ )grad div 퐮 + μ div grad 퐮 − η grad p

+ ρ (퐛 − 퐮̈ ) + S (퐮̇ − 퐮̇ ) = 0, (35) 
 − η grad p + ρ (퐛 − 퐮̈ ) − S (퐮̇ − 퐮̇ ) = 0      … (36) 
For the two dimensional problem, we assume the 
displacement vector 퐮  (i = F, S) as  
 퐮 = u , 0, w  where i = F, S.                                  … (37)  
Equations (34) - (36) with the help of equation (37) in the 
absence of body forces take the form  

 η
∂ u
∂x∂t +

∂ w
∂z∂t + η

∂ u
∂x∂t +

∂ w
∂z∂t = 0,        … (38) 

 η
∂p
∂x + ρ

∂ u
∂t + S

∂u
∂t −

∂u
∂t = 0,                  … (39) 

 η
∂p
∂z + ρ

∂ w
∂t + S

∂w
∂t −

∂w
∂t = 0,              … (40) 

 λ + μ
∂θ
∂x + μ ∇ u − η

∂p
∂x − ρ

∂ u
∂t

+ S
∂u
∂t −

∂u
∂t = 0,                   … (41) 

 λ + μ
∂θ
∂z + μ ∇ w − η

∂p
∂z − ρ

∂ w
∂t

+ S
∂w
∂t −

∂w
∂t = 0,                … (42) 

where  

 θ =
∂(u )
∂x +

∂(w )
∂z                                                     … (43) 

and 

 ∇ =
∂
∂x +

∂
∂z                                                              … (44) 

Also, t  and  t  the normal and tangential stresses in 
the solid phase are as under 

 t = λ
∂u
∂x +

∂w
∂z + 2μ

∂w
∂z                          … (45) 

 t = μ
∂u
∂z +

∂w
∂x                                               … (46) 

The displacement components u  and w  are related to the 
dimensional potential ϕ  and ψ  as  

 u =
∂ϕ
∂x +

∂ψ
∂z  and w =

∂ϕ
∂z −

∂ψ
∂x  j = S, F        … (47) 

Using eq. (47) in equations (38)-(42), we obtain the 
following equations determining  ϕ , ϕ ,  ψ ,ψ  and p as: 

 ∇ ϕ −
1

C
∂ ϕ
∂t −

S
λ + 2μ (η )

∂ϕ
∂t = 0       … (48) 

 ϕ = −
η
η

ϕ                                                                   … (49) 

 μ ∇ ψ − ρ
∂ ψ
∂t + S

∂ψ
∂t −

∂ψ
∂t = 0             … (50) 

 ρ
∂ ψ
∂t + S

∂ψ
∂t −

∂ψ
∂t = 0                                … (51) 

 (η ) p − η ρ
∂ ϕ
∂t − S

∂ϕ
∂t = 0                            … (52) 

where 

  C  = (η ) λ μ
(η ) ρ (η ) ρ

                                                  … (53)  
Assuming the solution of the system of equations (48) - 
(52) in the form 
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 ϕ , ϕ ,ψ ,ψ , p =
                            ϕ , ϕ ,ψ ,ψ , p exp(iωt)    … (54)  
where ω is the complex circular frequency. 
Making the use of (54) in equations (48)-(52), we obtain 

 ∇ +
ω
C

−
iωS

λ + 2μ (η )
ϕ = 0                  … (55) 

 [μ ∇ + ρ ω − iωS ]ψ = −iωS ψ                  … (56) 
 [−ω ρ + iωS ]ψ − iωS ψ = 0                        … (57) 
 (η ) p + η ρ ω ϕ − iωS ϕ = 0                      … (58) 

 ϕ = −
η
η

ϕ                                                                … (59) 

Equation (55) corresponds to longitudinal wave 
propagating with velocity V , given by 

  V =
1

G                                                                          … (60) 

where G = −
ω λ μ (η )

                               … (61) 

From equation (56) and (57), we obtain 

 ∇ +
ω

V
ψ = 0,                                                     … (62) 

Equation (62) corresponds to transverse wave 
propagating with velocityV , given by V = 1/G  
where 

 G =
ρ
μ
−

iS
μ ω

−
S

μ (−ρ ω + iωS )                   … (63) 

 
FORMULATION OF THE PROBLEM  
Consider a two dimensional problem by taking the z-axis 
pointing into the lower half-space and the plane interface 
z=0 separating the uniform micropolar viscoelastic solid 
half space mediumM  (z<0) and fluid saturated porous 
half space medium M  (z>0). Consider a longitudinal 
wave or transverse wave propagating through the medium 
M , incident at the plane z=0 and making an angle θ  with 
normal to the surface. Corresponding to incident 
longitudinal wave or transverse wave, we get two 
reflected waves in the medium M  and three transmitted 
waves in medium M  as shown in fig.1. 
 

 
Figure 1: Geometry of the problem 

 

In medium 퐌ퟐ  
 ϕ = B  exp iδ x sinθ  − z cosθ  + iω  t ,         … (64) 
 ψ = B  exp iδ x sinθ  − z cosθ  + iω  t

+ B  exp iδ x sinθ  − z cosθ  

+ iω  t ,                                             … (65) 
 Φ = EB  exp iδ x sinθ  − z cosθ  + iω  t

+ FB  exp iδ x sinθ  − z cosθ  

+ iω  t ,                                             … (66) 
In medium 퐌ퟏ 
 ϕ , ϕ , p = {1, m , m }[A  exp{ik (x sinθ – z cosθ )

+ iω t}+A  exp{ik (x sinθ + z cosθ )
+ iω t}],                                            … (67) 

 {ψ ,ψ }
= {1, m } [B  exp{ik (x sinθ – z cosθ ) + iω t}
+ A  exp{ik (x sinθ + z cosθ )
+ iω t}],                                                                            … (68) 
 
where 

 m = −
η
η

 ;  m = −
η ω ρ − iω S

(η )  ; 

 m =
iω S

iω S − ω ρ
 ;                                                 … (69) 

and B  , B  , B   are amplitudes of transmitted P-wave, 
transmitted coupled transverse and micro-rotation waves 
respectively. Also A or B , A  and A  are amplitudes 
of incident P-wave or SV-wave, reflected P-wave and 
reflected SV-wave respectively and to be determined 
from boundary conditions.  
 
BOUNDARY CONDITIONS 
Boundary conditions appropriate here are the continuity 
of displacement, micro rotation and stresses at the 
interface separating medium M  and M . These boundary 
conditions at z=0 can be written in mathematical form as  
 t = t − p ; t = t ,  m = 0  
 t − p = K (w− w ) ; t = K (u− u )        … (70) 
In order to satisfy the boundary conditions, the extension 
of the Snell’s law will be  

 
sinθ

v =
sinθ

v =
sinθ

v =
sinθ

v =
sinθ

v =
sinθ

v  … (71) 

where v =
λ

 ;  v =
λ

 
For longitudinal wave, 
 v = v  ; θ = θ                                                           … (72) 
For transverse wave, 
 v = v  ; θ = θ                                                           … (73) 
Also 
 δ v = δ λ = δ λ = k v = k v = ω,  
at z = 0                                                                            … (74) 
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Making the use of potentials given by equations (64)-(68) 
in equations (1)-(2) and (6) and (45)-(47) and (67) and 
then using the boundary conditions given by equation 
(70) and using (71)-(74), we get a system of five non 
homogeneous which can be written as  

 a Z = Y , (i = 1,2,3,4,5 )                                    … (75) 

where 

 Z =
B
B  ; Z =

B
B  ; Z =

B
B  ;  Z =

A
B  ; 

 Z =
A
B                                                                            … (76) 

where B = A  or B  is amplitude of incident P-wave 
or SV-wave respectively. 
i.e. Z  to Z  be the amplitude ratios of reflected modified 
longitudinal displacement wave, reflected CD I wave at 
an angle θ , reflected CD II wave at an angle θ , refracted 
P-wave and refracted SV-wave, respectively and a  in 
non-dimensional form are as 

 a =
−λδ − (2μ + κ) δ cos θ

μδ
 ; 

 a =
(2μ + κ)δ sinθ cosθ

μδ
  

  a =
(2μ + κ)δ sinθ cosθ

μδ
 ; 

 a =
k λ + 2μ cos θ + m

μδ
  

  

  a =
−2μ k sinθ cosθ

μδ
 ; 

  a =
(2μ + κ)δ sinθ cosθ

μδ
 

  a =
μδ cos 2 θ + κδ cos θ − κE

μδ
 ; 

 a =
μδ cos 2 θ + κδ cos θ − κF

μδ
  

 a =
μ k sin2θ

μδ
 ;   a =

μ k  cos2θ
μδ

 

 a = 0;  a = cosθ  ;  a =
δ F cosθ

δ E  ; 

  a = 0 ;  a = 0 

  a =
λδ + (2μ + κ) δ cos θ + k i δ cosθ

k  δ  ; 

 a =
−(2μ+ κ)δ sinθ cosθ − k i δ sinθ

k  δ  ;  

  a =
−(2μ + κ)δ sinθ cosθ − k i δ sinθ

k  δ  ;  

  a =
i k cosθ

 δ  ;   a = −  
i k sinθ

 δ  ; 

 a =
−(2μ+ κ)δ sinθ cosθ − ik  δ sinθ  

k  δ  ; 

  a

=
−μδ cos2θ − κδ cos θ + κE − k i δ cosθ

k  δ  ; 

 a

=
−μδ cos2θ − κδ cos θ + κF − k i δ cosθ

k  δ  ; 

 a =  
 

 ;   a =  
 

 ; 
For incident P wave 
 Y = −a  ; Y = a  ; Y = a  ;  Y = a  ;  
Y = −a   
For incident SV wave 
 Y = a  ; Y = −a  ; Y = a  ;  Y = −a  ;  
Y = a                                                                            … (77) 
 
PARTICULAR CASES 
Case I: Normal force stiffness (K ≠ 0, K → ∞) 
In this case, we get a system of five non homogeneous 
equations as in given by equation (77) with some a  
changed as  

  a = −i sinθ  ;  a =
−i δ cosθ

 δ  ; 

 a =
−i δ cosθ

 δ  ;                                                        … (78) 

Case II: Transverse force stiffness (K ≠ 0, K → ∞) 
In this case, a system of five non homogeneous equations 
as those given by equation (77) is obtained but some a  
changed as  

 a =
i δ cosθ

 δ  ;  a =
−i δ sinθ

 δ  ;  

 a =
−i δ sinθ

 δ                                                           … (79) 

Case III: Welded contact (K → ∞, K → ∞) 
Again in this case, a system of five non homogeneous 
equations is obtained as in equation (67) with some a  
changed as  

 a =
i δ cosθ

 δ  ;  a =
−i δ sinθ

 δ  ;  

 a =
−i δ sinθ

 δ  ;  

  a = −i sinθ  ;  a =
−i δ cosθ

 δ  ;  
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a =
−i δ cosθ

 δ  ;                                                         … (80) 

Special case:- 
CASE-1 
If pores are absent or gas is filled in the pores then ρ  is 
very small as compared to ρ  and can be neglected, so the 
relation (41) gives us  

 C =
λ + 2μ

ρ .                                                             … (81) 

In this situation the problem reduces to the problem of 
empty porous solid half space lying over micropolar 
elastic solid half space.  
CASE-2 
When upper half space is micropolar elastic solid. In this 
case boundary conditions remain same and hence a  in 
equation (77) are same. 
 
NUMERICAL RESULTS AND DISCUSSION 
The theoretical results obtained above indicate that the 
amplitude ratios Z  (i = 1,2,3,4,5 ) depend on the angle 
of incidence of incident wave and material properties of 
half spaces. In order to study in more detail the behaviour 
of various amplitude ratios, we have computed them 
numerically for a particular model for which the values of 
various physical parameters are as under In medium M , 
the physical parameters for micropolar viscoelastic elastic 
solid are taken from Gauthier (1982) as  

 λ∗ = 7.59 × 10
dyne
cm ,  

 μ∗ = 1.89 × 10  dyne/cm ,  
 κ∗ = 0.0149 × 10 dyne/cm ,ρ = 2.19gm/cm  
 γ∗ = 0.0268 × 10 dyne, j = 0.0196cm .  
 λ = λ∗ 1 + 퐢 , μ = μ∗ 1 + 퐢 ,  

 κ = κ∗  1 +
i

Q , γ = γ∗ 1 +
i

Q ,                         … (79) 

where the quality factors Q (i = 1,2,3,4) are taken 
arbitrarily as  
Q = 5, Q = 10, Q = 15, Q = 13. 
In mediumM , the physical constants for fluid saturated 
incompressible porous medium are taken from de Boer, 
Ehlers and Liu (1993) as 

η = 0.67, η = 0.33, ρ = 1.34
Mg
m , 

 ρ = 0.33 Mg/m ,λ = 5.5833 MN/m ,  

K =
0.01m

s , γ =
10.00KN

m   

μ = .                                                                      … (80)  
A computer programme in MATLAB has been developed 
to calculate the modulus of amplitude ratios of various 
reflected and transmitted waves for the particular model 

and to depict graphically. In figures (2)-(22), dashed 
dotted line shows the general case (Gen) when medium-I 
is fluid saturated porous solid and medium-II is 
micropolar viscoelastic solid half space. In these figures 
dotted line shows the case when medium-I becomes 
empty porous solid and medium-II remains same. In these 
figures P wave (longitudinal wave) is incident wave. 
Figure (2)-(5) shows the variation of |Z | with respect to 
angle of incidence which varies from θ = 0  to θ = 90 . 
These figures show the effect of porosity which is very 
clear. Also after comparing the figures (2)-(5), the effect 
of stiffness is clear. In figure (2), the contact between two 
half space is imperfect. Figure (3) shows the variation of 
|Z | when contact between half spaces is Normal Force 
Stiffness (NFS). Figure (4) corresponding to Transverse 
Force Stiffness (TFS) contact. Figure (5) shows the 
variation of |Z | when the contact between two half 
spaces is Welded (Welded). In figures (2)-(5) effect of 
fluid filled in pores (porosity) as well as effect of stiffness 
is very clear. Figure (6)-(9) shows the variation of |Z | 
with respect to angle of incident P wave. In these figures 
also, the effect of porosity and effect of stiffness is clear. 
In all cases of stiffness (imperfect boundary, normal force 
stiffness, transfers force stiffness, welded contact) the 
value of |Z | are different. Figure (10) to (13) shows the 
variation of |Z | with respect to angle of incidence of P 
wave. In all these figures, the effect of porosity and 
stiffness is very clear. The values of |Z | are small in case 
of imperfect interface than all other cases. Figure (14) to 
(18) shows the variation of |Z | i.e. modulus of amplitude 
ratio for reflected P wave with respect to angle of incident 
from θ = 0  to θ = 90 . These figures also show the 
effect of porosity as well as effect of stiffness. Figures 
(19) to (22) depict the variation of |Z | with respect to 
angle of incident of P wave. In these figures the effect of 
stiffness and porosity is very clear. In figures (23) to (42), 
there is a SV wave (transverse wave) incident. In these 
figure dashed dotted line shows the variation of |Z | (i =
1,2,3,4,5) when medium-I is fluid saturated porous solid 
whereas dotted line shows the case when medium-I 
becomes empty porous solid (EPS). In all these figures 
(23) to (42) medium-II to remains same. Also in these 
figures, imperfect shows the case when interface between 
two half spaces is imperfect. NFS shows the case when 
contact between the two half spaces is Normal force 
stiffness. TFS shows the case when boundary between 
two half spaces is transverse force stiffness. Welded 
shows the case of welded contact between the spaces. 
Figures (23)-(26), (27)-(30), (31)-(34), (35)-(38) and 
(39)-(42) shows the variation of |Z | (i = 1,2,3,4,5) 
respectively for different cases of stiffness. This figure 
shows the effect of porosity i.e. fluid filled in the pores of 
fluid saturated porous solid and effect of stiffness. In 
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figures (43) to (81) dashed dotted lines shows the case 
when medium-I is fluid situated porous solid and 
medium-II is micropolar viscoelastic solid. Dotted lines 
show the case when medium-I remain same but medium-
II becomes micropolar elastic solid. These figures show 
the effect of viscosity of micropolar viscoelastic solid. In 
figures (43) to (62), P wave is incident and the figure (63) 
to (81), there is SV wave incident. Figures (43)-(46), 
(47)-(50), (51)-(54), (55)-(58) and (59)-(62) shows the 
variation of |Z | (i = 1,2,3,4,5) respectively with angle of 
incidence P wave in four cases of stiffness i.e. imperfect 
interface, NFS (normal force stiffness), TFS (transverse 
force stiffness), Welded (welded). In figures (43) to (54), 
the effect of viscosity and stiffness is evident i.e. for 

modulus of amplitude ratio corresponding to transmitted 
wave. But figures (55) to (58) i.e. for corresponding to 
reflected P wave, the effect of viscosity is negligible. In 
figures (59) to (62), the effect of viscosity for reflected 
transverse wave (SV wave) is negligible for imperfect 
and welded case. But effect of viscosity in NFS, TFS is 
clear. Figures (63)-(66), (67)-(70), (71)-(74), (75)-(78) 
and (79)-(81), shows the variation of 
|Z |, |Z |, |Z |, |Z | and |Z | respectively in four cases of 
stiffness. In all these figures i.e. (63 to (81), the effect of 
stiffness as well as effect of viscosity is clear. Also the 
effect of viscosity is more for transmitted wave than for 
reflected waves. 

 

 
Figure (2)-(5): Variation of the |Z | with angle of incidence of the 

incident longitudinal wave 
 

 
Figure (6)-(9): Variation of the |Z | with angle of incidence of the 

incident longitudinal wave 

 
Figure (10)-(13): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (14)-(18): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
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Figure (19)-(22): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (23)-(26): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
 

 
Figure (27)-(30): Variation of the |Z | with angle of incidence of 

the incident transverse wave 

 
Figure (31)-(34): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
 

 
Figure (35)-(38): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
 

 
Figure (39)-(42): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
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Figure (43)-(46): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (47)-(50): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (51)-(54): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 

 
Figure (55)-(58): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (59)-(62): Variation of the |Z | with angle of incidence of 

the incident longitudinal wave 
 

 
Figure (63)-(66): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
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Figure (67)-(70): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
 

 
Figure (71)-(74): Variation of the |Z | with angle of incidence of 

the incident transverse wave 

 
Figure (75)-(78): Variation of the |Z | with angle of incidence of 

the incident transverse wave 
 

 
Figure (79)-(81): Variation of the |Z | with angle of incidence of 

the incident transverse wave 

 
CONCLUSION 
In conclusion, a mathematical study of reflection and 
transmission coefficients at an imperfect interface 
separating micropolar viscoelastic solid half space and 
fluid saturated incompressible porous half space is made 
when longitudinal wave or transverse wave is incident. It 
is observed that 

1. The effect of incident wave is significant on 
amplitude ratios. All the amplitudes ratios are 
found to depend on incident waves. 

2. The velocities of various reflected and 
transmitted waves are found to be complex 
valued. 

3. The modulus of amplitudes ratios of various 
reflected and transmitted waves depend on the 
angle of incidence of the incident wave and 
material properties of half spaces.  

4. The effect of fluid filled in the pores of 
incompressible fluid saturated porous medium is 
significant on the amplitudes ratios for reflected 
and transmitted waves. 

5. The effect of stiffness is significant either 
longitudinal wave is incident or transverse wave 
is incident. 

6. If we neglect the viscous effect of micropolar 
viscoelastic solid then the variations in the 
amplitude ratios of various transmitted waves 
have been affected significantly either 
longitudinal wave is incident or transverse is 
incident.  

7. Effect of viscosity of micropolar viscoelastic 
solid is more on modulus of amplitude ratios for 
transmitted waves. 
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8. Effect of viscosity is more for transmitted wave 
than for reflected waves. 

Hence the amplitudes ratios of various reflected and 
transmitted waves depend on material properties and 
angle of incidence of the incident wave. The model 
presented in this paper is one of the more realistic forms 
of the earth models. The present theoretical results may 
provide useful information for experimental 
scientists/researchers/seismologists working in the area of 
wave propagation in micropolar viscoelastic solid/fluid 
saturated incompressible porous solid. 
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