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Abstract In this paper, the reflection and transmission of plane waves from imperfect interface separating a micropolar viscoelastic
solid half space and a fluid saturated incompressible porous solid half space is studied. A longitudinal wave (P-wave) or
transverse wave (SV-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted
waves have been obtained with help of boundary conditions at the interface. Then these amplitude ratios have been
computed numerically for a specific model and results thus obtained are shown graphically with angle of incidence of
incident wave. It is found that these amplitude ratios depend on angle of incidence of the incident wave, imperfect
interface as well as on the properties of media. From the present investigation, a special case when fluid saturated porous
half space reduces to empty porous solid and micropolar viscoelastic solid half space reduces to micropolar elastic solid
has also been deduced and discussed with the help of graphs.
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viscoelasticity. Many researchers discussed the problems
of waves and vibrations in micropolar viscoelastic solids.
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Quick Response Code: Based on the work of Fillunger model (1913), Bowen

(1980) and de Boer and Ehlers (1990a, 1990b) developed

an interesting theory for porous medium having all

EI E constituents to be incompressible. Based on this theory,

. many researchers like de Boer and Liu (1994, 1995), Liu

) (1999), Singh (2002), de Boer and Didwania (2004),

I Accessed Date: Kumar and Barak (2007), Kumar and Hundal (2007),

E 1 10 January 2018 Kumar et.al. (2011) etc. studied some problems of wave

propagation in fluid saturated incompressible porous

media. Elastic waves propagation in fluid saturated

INTRODUCTION porous media has its importance in various fields such as

Most of natural and man-made materials, including soil dynamics, hydrology, seismology, earthquake

engineering, geological and biological media, possess a engineering and geophysics. Imperfect interface
microstructure. The ordinary classical theory of elasticity
fails to describe the microstructure of the material. To
overcome this problem, Suhubi and Eringen (1964),
Eringen and Suhubi (1964) developed a theory in which
they considered the microstructure of the material and
they showed that the motion in a granular structure
material is characterized not by a displacement vector but
also by a rotation vector. Gautheir (1982) found
aluminum-epoxy composite to be a micropolar material.

Eringen (1967) developed the linear theory of micropolar

considered in this problem means that the stress
components are continuous and small displacement field
is not. The values of the interface parameters depend
upon the material properties of the medium. Recently,
using the imperfect conditions at the interface, Chen et.al.
(2004), Kumar and Chawala (2010), Kumari (2014) etc.
studied the various types of wave problems. Using the
theory of de Boer and Ehlers (1990) for fluid saturated
porous medium and Eringen (1967) for micro polar
elastic solid, the reflection and transmission phenomenon
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of longitudinal and transverse waves at an imperfect
interface between micropolar elastic solid half space and
fluid saturated porous solid half space is studied. A
special case when fluid saturated porous solid half space
reduces to empty porous solid half space has been
deduced and discussed. Amplitudes ratios for various
reflected and transmitted waves are computed for a
particular model and depicted with help of graphs and
discussed accordingly. The model which is considered
here is assumed to exist in the oceanic crust part of the
earth and the propagation of wave through such a model
will be of great use in the fields which are related to earth
sciences.

BASIC EQUATIONS AND CONSTITUTIVE

RELATIONS

For medium M, (Micropolar viscoelastic solid)
Following Eringen (1967), the constitutive and field
equations of a micropolar viscoelastic solid in the absence
of body forces and body couples, are as under

tia = Mg Sig + p(Uieg + Upge) + (U — €ard,) (1)
My = a(l)r‘rskl + B(I)k]] + Y(I)]‘k (2)
(c1% +c3H)V(V.u) — (% +¢33)V x (V x u) +¢32V
x¢ =i .. (3)
(c4® +csHV(V. ) — ¢,V % (V x @) + 0*V X u
—2w°¢p = ¢ - (4)
where
,_O+2w) B2 K.
1 p ’ (2 B)pv 3 pv
Y o+ K
Cll==—; C’=—; wel=—;
Yo ] ® T pj
o B )
=h b Gy e ER T G
K=K +1xK, —t>,a—a o a>,
B=p +B, 5t) VY NG
—-(6>+k 6) 5
— "ox 9z - ()

}\‘*,“*,K*,a*,B*,,Y*,}\IU*,“U*,KU*,%*,BU* and ,YU* are
material constants, p is the density and j the rotational
inertia. u and ¢ are displacement and microrotation
vectors respectively. Superposed dots on right hand side
of equations (3) and (4) represent the second order partial
derivative with respect to time.

Taking u = (u,0,w) and ¢ = (0, ¢,,0) and introducing
potentials ¢(x,z,t) and wy(x,z,t) which are related to
displacement components as

_0¢ dy _ 06 Ody

u—&+§andw E—& (6)
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With the help of displacement components given by (6) in
(3) and (4), we get

V? —1 o =0 7
CETOEI A (0
V? —1 o =0 8
- (sz + ng)ﬁ Y= p¢2 - ( )
<V2 —2q—iﬁ>¢ +qV2y =0 )
c,20t2) "2
where
=L .g=2 10)
p_“_'_qu_,Y (

Assuming the time variation as

o(x,z,t) = ¢(X,2) exp(int)
y(x z,t) = y(x z) exp(iot)

0,(x,2,1) = ¢, (x, 2) exp(iot) ..(11)
Using (11) in (7) to (9), we obtain
(v + (0?*/v,%)) =0 .(12)
(V* + 0?BV2 + 0*C)(¥,9,) =0 .. (13)
where

_9(p-2) 1 1

0P +(sz +C32)+C4_2

_ 1 1 2q
= e log o) -6
and V,% = ¢, 2 + ;2 ... (15)

In an unbounded medium, the solution of (12)
corresponds to modified longitudinal displacement wave
(LD wave) propagating with velocity V;.

Writing the solution of (13) as

y=y, vy, .. (16)
where
vy, and v, satisfy
(V2 + slz)wl =0 .. (A7)
(V2+5,°)y, =0 .. (18)
and
8.2 =102 8, = %02 .. (19)
1
M2 = E[B +/B2—4c] ;
1
A =§[B—\/BZ —40] ..(20)
From (8) we obtain
¢2 = Ewl + F\TIZ
u)z u)z
where E = ()  F= () .. (21)

p p
Thus there are two waves propagating with velocities
A, and A, ", each consisting of transverse displacement
v and transverse microrotation ¢,.Following Parfitt and

Eringen(1969), these waves are modified coupled
transverse  displacement wave and  transverse
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microrotational waves (CD | and CD I
respectively.

For medium M; (Fluid saturated incompressible
porous medium): Following de Boer and Ehlers (1990b),
the governing equations in a fluid-saturated

incompressible porous medium are

waves)

diV(T]SXS + T]FXF) =0 (22)
divTs —nSgrad p + pS(b — %) — Pf =0, ..(23)
divT§ —nFgradp + pF(b — %) + P = 0, .. (24)

where x; and X; (i=S,F) denote the velocities and
accelerations, respectively of solid (S) and fluid (F)
phases of the porous aggregate and p is the effective pore
pressure of the incompressible pore fluid. pS and pFare
the densities of the solid and fluid phases respectively and
b is the body force per unit volume. T5 and T are the
effective stress in the solid and fluid phases respectively,
Pf is the effective quantity of momentum supply and nS
and nF are the volume fractions satisfying

n+nf=1 ..(27)
If ug and uy are the displacement vectors for solid and
fluid phases, then

Xg = Ug, Xg = g, Xp = U, Xp = Up .. (28)
The constitutive equations for linear isotropic, elastic
incompressible porous medium are given by de Boer,
Ehlers and Liu (1993) as

TS = 2uSEg + AS(Eg. 1], .. (29)
=0, ..(30)
P; = =S, (i1 — ug), - (31)

where A5 and pS are the macroscopic Lame’s parameters
of the porous solid and Eg is the linearized Langrangian
strain tensor defined as

1
Es = E(grad ug + gradTug), ..(32)
In the case of isotropic permeability, the tensor S,
describing the coupled interaction between the solid and
fluid is given by de Boer and Ehlers (1990b) as

(T]F)ZYFR
SV =TI, (33)
where YR is the specific weight of the fluid and KF is the
Darcy’s permeability coefficient of the porous medium.
Making the use of (28) in equations (22)-(24), and with
the help of (29)-(32), we aobtain
div(nSug + nfug) =0, ..(34)
(A5 + pS)grad div ug + pSdiv grad ug — nSgrad p

+p3(b — i) + S, (@ — 115) = 0, (35)

—nFgrad p + pf(b —iig) — S, (U —1g) =0 ...(36)
For the two dimensional problem, we assume the
displacement vector u; (i = F,S) as
u; = (u',0,w!) where i =F,S. ..(37)
Equations (34) - (36) with the help of equation (37) in the
absence of body forces take the form

22us  9%wSs 92ufF 92wk
" [6x6t azat] " [6x6t azat]_ - -G8
6p 62uF+S ouf  ous| 39
U e b rat vl Il -+ (39)
Fap 62WF+S owF  ows . 20
L at ot | - (40)
S 2::S
S N Sv2,,S S_p_ o0°u
(x”‘)ax”‘vu Bl o
S our _ ou? =0 41
viot at| T - (41)
20° s0p (%S
S sy Su2ya,S Y
(07 +0%) 57 + VWS = — S
AP L (42)
vl ot at |
where
aus)  a(ws)
0° = R .. (43)
and
92 92
2 —
V_W_Fﬁ .. (44)

Also, t,,° and t,,S the normal and tangential stresses in
the solid phase are as under

t,,8 =25 (6”5 +6ﬂ> AP L (45)
zz ox 0z Mz
t,S = (6—US + 6l> (46)
zx 0z  0x

The displacement components w and w/ are related to the
dimensional potential ¢ and {/ as

;08 oy 09 oyl
u

LS T = _ T j=
W + P andw) = 57~ O j=SF ..(47)

Using eq. (47) in equations (38)-(42), we obtain the
following equations determining ¢°,¢", ¢S, ¢F and p as:

o2gs _ L O Sy 04° _ 48)
C12 ot2 (>\,S+2“S)(TIF)2 ot
S
n
oF = 7 S .. (49)
920S F S
0y " oy
pSv2yS — ps 5tz +S FTET =0 ..(50)
62lIJF 6lIJF alIJS
F — =
5tz + S, [6t 6t] 0 ..(51)
P20 997
F)2 _c 29 _

where

_ /(nF)Z(KS+2uS)
G = (F)2pS+(0S)2pF - (53)
Assuming the solution of the system of equations (48) -
(52) in the form
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(6% 6" yS ¥ p) =
(¢1S,¢1F’¢15’¢1F,p1) eXp(i(Dt) (54)
where o is the complex circular frequency.
Making the use of (54) in equations (48)-(52), we obtain
o2 oS,

2y ————— ¥ [p5=0 .. (65
C* (3 +2u5)(nF)? i ©5)
[LSVZ + pSw? — i08,]y;° = —i0S, ¢, " .. (56)
[—0?pF +i0S, P, " —i0S, ;5 =0 ..(57)
(")?py + n’pfw¢,” — iwS,¢,° = 0 .. (58)
S
F_ 1N s
¢, = % ..(59)
Equation  (55) corresponds to longitudinal wave
propagating with velocity V;, given by
-2 1
|t ___ S
where G; = [C12 m(ks+2us)(nF)2] .. (61)

From equation (56) and (57), we obtain
2
[vz +2—Zl U,5=0, .. (62)
Va

Equation (62) corresponds to transverse
propagating with velocityV,, given by V,” = 1/G,
where

S : 2
p> ISy Sy
Gy = o ——¥ : .. (63

2 {us uSo us(—pSwZHmSV)} (©3)

wave

FORMULATION OF THE PROBLEM
Consider a two dimensional problem by taking the z-axis
pointing into the lower half-space and the plane interface
z=0 separating the uniform micropolar viscoelastic solid
half space mediumM, (z<0) and fluid saturated porous
half space medium M; (z>0). Consider a longitudinal
wave or transverse wave propagating through the medium
M, incident at the plane z=0 and making an angle 6, with
normal to the surface. Corresponding to incident
longitudinal wave or transverse wave, we get two
reflected waves in the medium M; and three transmitted
waves in medium M, as shown in fig.1.

& &

A

Lz

Figure 1: Geometry of the problem
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In medium M,

¢ = B, exp{id; (xsind; —zcosb, ) +im, t},  ..(64)
v = B, exp{id,(x sinb, —z cosh, ) + iw, t}

+ B, exp{id;(x sinb; — z cos03 )

+iw; t), .. (65)
@, = EB, exp{id,(x sin, —z cosh, ) + im, t}

+ FB; exp{id;(x sinf; — z coshs )

+iw; t), ... (66)

In medium M,
{¢S, 9", p} = {1, my, m,}[Ay; exp{ik, (x sinBy—z coso,)
+ i, t}+A; exp{ik, (x sinf; + z cosH,)

+iw,t}], .. (67)
{ws, ¢t}
= {1,m;} [By; exp{ik,(x sinfy—z cosb,) + io,t}
+ A, exp{ik, (x sin6, + z cosb,)
+iw,t}], ... (68)
where
S S 2. F H
n o °p" — oSy
M P O
n (")
i0,S
My = —— 2> . (69)

i0,S, — mzzpF '
and B,,B,,B; are amplitudes of transmitted P-wave,
transmitted coupled transverse and micro-rotation waves
respectively. Also Ay,0r By;, A; and A, are amplitudes
of incident P-wave or SV-wave, reflected P-wave and
reflected SV-wave respectively and to be determined
from boundary conditions.

BOUNDARY CONDITIONS

Boundary conditions appropriate here are the continuity
of displacement, micro rotation and stresses at the
interface separating medium M; and M,. These boundary
conditions at z=0 can be written in mathematical form as
tzz = tZZS —p; tZX = tzxsl mzy =0

t,,S —p =K, (w—-w3); t,,5 = K(u—ud) ..(70)
In order to satisfy the boundary conditions, the extension
of the Snell’s law will be

sind, _ sin; _ sind, _sinb; _ sinb, _ sinds

— — — ... (71)
Vo Vi Va Vi Va V3
_ 1 _ 1
where V, ==V ==
. .2 3
For longitudinal wave,
Vg =Vq; 0 =0; .. (72)
For transverse wave,
Vg =V, ; 0, =0, .. (73)
Also
d,Vy = 52761 = 537@1 =kyv; = Kavp = o,
atz=0 (74
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Making the use of potentials given by equations (64)-(68)
in equations (1)-(2) and (6) and (45)-(47) and (67) and
then using the boundary conditions given by equation
(70) and using (71)-(74), we get a system of five non
homogeneous which can be written as

5

Z 8,2, =Y, (i=12345) .. (75)
j=0
where
B, B, B; Ay
Zi= 2y = 2= Ly = —
1 20 ) 2 BO ) 3 BO ) 4 BO [}
Z.==2 .. (76
=5 (76)

where B, = Ay, or By, is amplitude of incident P-wave
or SV-wave respectively.

i.e. Z; to Zs be the amplitude ratios of reflected modified
longitudinal displacement wave, reflected CD | wave at
an angle 6,, reflected CD Il wave at an angle 85, refracted
P-wave and refracted SV-wave, respectively and a;; in
non-dimensional form are as

_>\,512 - (2!.1 + K)(512005261) i

a =
" !vl512
(2 + ¥)3,%sin6,cos0,
dip = >
18y _ _
(2u + K)33%sin6;cos0,
a3 = 2 ;
18y
k3(1® + 2pScos?0,) +m,
a14 = 2
HO;
—2u5k3sinB,cos0,
s = > ;
H8y _ _
= (2n + k)8, %sinB, cosb,
o 13, _
8,2 cos 28, + k8,2c0s20, — kE
dzz = > ;
U832 c0os2 0, + k852c0520; — KF
dzz = >
6y
uSk?sin20, uSk3 cos20,
Q=" s Qs =5 —
6y 8y _
— O3F cosB3
a1 = 0; a3, =C080;,; az3 =——F—;
8,E

azgs =0;a355=0
A8, + (2u +x)(8,%c0s?8,) + Kyi 6,C080,
a41 = k 8 ;
_ ™Y1 _
—(2u + %)8,%sinB,cos0, — ki 8,sinH,
a42 = k 8 ;
n Y1

_ —(2p + k)85%sin0;c080; — Kyi 855iN0;

a =
3 kn 81 ’
i kyc0s0, i k,sing,
Qyu=———— Qg =— ——=;
44 81 45 ~ ~ 81 _
—(2u + x)8,%sinB,cosO, — ik, 8,5in6,
as1 = ,
ke 8,
asz _ _ _
_ —p8,°c0s20, — k8,°c0s?0, + KE — K,i 8,086,
B ke 8, '
as3 _ _ _
_ —p83°c0s20; — k83°c0s?03 + KkF — K,i 850805
B ke 8, '
ag, = 11(121;61 © ags = 11(2;(1562 ;

For incident P wave

Y1 = =14 Y2 T84 ; Y3 = 8345 Yq =844,
Y5 = —as,

For incident SV wave

Yy =ay5; Yo = —8z5; Y3 = a3s; Y4 = —a45;
Ye = ags . (77)
PARTICULAR CASES

Case I: Normal force stiffness (K, # 0,K; - o)

In this case, we get a system of five non homogeneous
equations as in given by equation (77) with some a;;
changed as

. —i 8,c0s6,
a5y = —1sIn6; ; as; = s
_ 1
—i 85c0s0
1

Case I1: Transverse force stiffness (K, # 0,K, - o)

In this case, a system of five non homogeneous equations
as those given by equation (77) is obtained but some a;;
changed as

i 5,C0S0 —i 8,sin0
dgq =—181 ! ; Agp =—281 2 ;
—i 8,4sin0
Qus = % .. (79)

Case I11: Welded contact (K,, - o0, K; = o)

Again in this case, a system of five non homogeneous
equations is obtained as in equation (67) with some a;;
changed as

i §,C050, —i 8,5in6,
A =— % Q= —(,
6 81
Az = —(
61 3
= —i 6,C0s0,
a51 = _l Sln91 , a52 = ,
81
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—i 65C0504
853 = —— ¢ | - (80)
1
Special case:-
CASE-1

If pores are absent or gas is filled in the pores then pF is
very small as compared to pS and can be neglected, so the
relation (41) gives us

S S
c= A -;SZu |
In this situation the problem reduces to the problem of
empty porous solid half space lying over micropolar
elastic solid half space.

CASE-2

When upper half space is micropolar elastic solid. In this
case boundary conditions remain same and hence a;; in
equation (77) are same.

.. (81)

NUMERICAL RESULTS AND DISCUSSION
The theoretical results obtained above indicate that the
amplitude ratios Z; (i =1,2,3,4,5) depend on the angle
of incidence of incident wave and material properties of
half spaces. In order to study in more detail the behaviour
of various amplitude ratios, we have computed them
numerically for a particular model for which the values of
various physical parameters are as under In medium M,
the physical parameters for micropolar viscoelastic elastic
solid are taken from Gauthier (1982) as

dyne
A =759 x 10" —,

cm
u* = 1.89 x 10! dyne/cm?,
k* = 0.0149 x 10''dyne/cm?,p = 2.19gm/cm?3
vy* = 0.0268 x 10''dyne, j = 0.0196cm?.

* 1 — * 1
A=2 (1+Q—1_)’H— " (1+Q_2),
i i
=K* + — =v* + —
K=K (1 QS),y Yy (1 Q4>’ .. (79
where the quality factors Q;(i=1234) are taken
arbitrarily as
Q, =5,Q, =10,Q; = 15,Q, = 13.
In mediumM,, the physical constants for fluid saturated
incompressible porous medium are taken from de Boer,
Ehlers and Liu (1993) as
Mg

n® =0.67,nF =0.33, pS = 1.34W,
pF = 0.33 Mg/m3,A% = 55833 MN/m?,

v = 0.01m or _ 10.00KN
= , ==
s _ 83750N m (80)
- mz e

A computer programme in MATLAB has been developed
to calculate the modulus of amplitude ratios of various
reflected and transmitted waves for the particular model
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and to depict graphically. In figures (2)-(22), dashed
dotted line shows the general case (Gen) when medium-I
is fluid saturated porous solid and medium-11 is
micropolar viscoelastic solid half space. In these figures
dotted line shows the case when medium-l1 becomes
empty porous solid and medium-I1 remains same. In these
figures P wave (longitudinal wave) is incident wave.
Figure (2)-(5) shows the variation of |Z,| with respect to
angle of incidence which varies from 8 = 0° to 6 = 90°.
These figures show the effect of porosity which is very
clear. Also after comparing the figures (2)-(5), the effect
of stiffness is clear. In figure (2), the contact between two
half space is imperfect. Figure (3) shows the variation of
|Z,] when contact between half spaces is Normal Force
Stiffness (NFS). Figure (4) corresponding to Transverse
Force Stiffness (TFS) contact. Figure (5) shows the
variation of |Z;| when the contact between two half
spaces is Welded (Welded). In figures (2)-(5) effect of
fluid filled in pores (porosity) as well as effect of stiffness
is very clear. Figure (6)-(9) shows the variation of |Z,]|
with respect to angle of incident P wave. In these figures
also, the effect of porosity and effect of stiffness is clear.
In all cases of stiffness (imperfect boundary, normal force
stiffness, transfers force stiffness, welded contact) the
value of |Z,]| are different. Figure (10) to (13) shows the
variation of |Z3| with respect to angle of incidence of P
wave. In all these figures, the effect of porosity and
stiffness is very clear. The values of |Z;] are small in case
of imperfect interface than all other cases. Figure (14) to
(18) shows the variation of |Z,] i.e. modulus of amplitude
ratio for reflected P wave with respect to angle of incident
from 6 = 0°to® =90°. These figures also show the
effect of porosity as well as effect of stiffness. Figures
(19) to (22) depict the variation of |Z¢| with respect to
angle of incident of P wave. In these figures the effect of
stiffness and porosity is very clear. In figures (23) to (42),
there is a SV wave (transverse wave) incident. In these
figure dashed dotted line shows the variation of |Z;| (i =
1,2,3,4,5) when medium-1 is fluid saturated porous solid
whereas dotted line shows the case when medium-I
becomes empty porous solid (EPS). In all these figures
(23) to (42) medium-11 to remains same. Also in these
figures, imperfect shows the case when interface between
two half spaces is imperfect. NFS shows the case when
contact between the two half spaces is Normal force
stiffness. TFS shows the case when boundary between
two half spaces is transverse force stiffness. Welded
shows the case of welded contact between the spaces.
Figures (23)-(26), (27)-(30), (31)-(34), (35)-(38) and
(39)-(42) shows the variation of |z;] (i=12345)
respectively for different cases of stiffness. This figure
shows the effect of porosity i.e. fluid filled in the pores of
fluid saturated porous solid and effect of stiffness. In
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figures (43) to (81) dashed dotted lines shows the case
when medium-1 is fluid situated porous solid and
medium-I1 is micropolar viscoelastic solid. Dotted lines
show the case when medium-1 remain same but medium-
Il becomes micropolar elastic solid. These figures show
the effect of viscosity of micropolar viscoelastic solid. In
figures (43) to (62), P wave is incident and the figure (63)
to (81), there is SV wave incident. Figures (43)-(46),
(47)-(50), (51)-(54), (55)-(58) and (59)-(62) shows the
variation of |Z;| (i = 1,2,3,4,5) respectively with angle of
incidence P wave in four cases of stiffness i.e. imperfect
interface, NFS (normal force stiffness), TFS (transverse
force stiffness), Welded (welded). In figures (43) to (54),
the effect of viscosity and stiffness is evident i.e. for

o 10" o 10"
_ — - Gen _ — - Gen
g —--- EPS o T [ EPS
= =
5 E 7 B
o 2 P wave o 4 & y Pwave
= = B
2 Imperfect 2 K ', NFS
= 2,0 v
= = f
O L N
1} T e 1} a
il 0s 1 15 2 il 0s 1 15 2
Angle of incidence Angle of incidence
0.0z 0.0z
— - Gen — - Gen
o - EPS | 1 - —--- EPS
Hoosp Hooos
i " i
= " = B
w 001 B P wave w 001 " P wave
= . = g
2 TFS 2 : Welded
ED.DUS_'-H“__U ED.DUS_‘EMH\\
T \'h\ N T iy
0 M - ] Tn
] 05 1 15 2 ] 05 1 15 2

Angle of incidence Angle of incidence
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N ™ L 10°
. o |— - Gen _ —- Gen
o J . |---- EPS = N ---- EPS
22 J t 22 i "
é ‘f \‘ P wave é i ‘\ P wave
RN “mperfect 29| f ~MF3
g ), b g ,l’ \\
=L K o ' =L A Y
gle==” T - 0 . _ N
0 05 1 15 2 0 0.4 1 15 2

_, Angle of incidence
10

- — - Gen
RN ---- EPS

5 Angle of incidence
10

R — - Gen
R ---- EPS

=1}
=

sl =g

= i | = ; |

= ! . z ‘ .

EREIN y P wave @4t/ i P wyave
] . E} .

£ i v TFS =3 ! Vo Wyelded
22|, : 22y .

I \ I | N

[=]

- o ao ' o PSEEELLLEEEI _
i} 05 1 15 2 0 05 1 15 2
Angle of incidence Angle of incidence
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modulus of amplitude ratio corresponding to transmitted
wave. But figures (55) to (58) i.e. for corresponding to
reflected P wave, the effect of viscosity is negligible. In
figures (59) to (62), the effect of viscosity for reflected
transverse wave (SV wave) is negligible for imperfect
and welded case. But effect of viscosity in NFS, TFS is
clear. Figures (63)-(66), (67)-(70), (71)-(74), (75)-(78)
and (79)-(81), shows the variation of
1Z,1,1Z,1,1Z5],1Z4] and |Zs| respectively in four cases of
stiffness. In all these figures i.e. (63 to (81), the effect of
stiffness as well as effect of viscosity is clear. Also the
effect of viscosity is more for transmitted wave than for
reflected waves.
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Figure (35)-(38): Variation of the |Z, | with angle of incidence of
the incident transverse wave

1.0001 1
o N
o = L e -_:-_-\w‘
m m !
g ! 217 ers b
2 =i — S wave 1
E E1 NFS
<L <L
09595 1
o 05 1 1.5 2 o 05 1 1.5 2
Angle of incidence Angle of incidence
1.0001 1.1
_ _ — - Gen
[ . w1, |---- EFPS :
o [ S gl o \ L
E i E 09t LT
= 09999 i = N R
2 — - Gen S wave = na "‘\h, « S wave
09998 |---- EPS ! OTFS g .’
=z i sor 7 Welded
0.5997 06 -
0 0s 1 15 2 0 0s 1 15 2

Angle of incidence Angle of incidence
Figure (39)-(42): Variation of the |Z| with angle of incidence of
the incident transverse wave

Page 08



M S Barak, Vinod Kaliraman

Sxm"“ Exm‘”
. — - Gen _ — - [en
Al T .- MES S 7 | ees MES
L N iy . N
2 2 I3 5
E 3 T " . .
@ P wrave 24 ; , Pwave
22 o Imperfect = ;LT NS
= e ] I -
£ T £ o N
<L - =T o \\

1] L gle=” b

a 0s 1 15 2 0 0.5 1 15 2
_, Angle of incidence 5 Angle of incidence
10 5 10
—- Gen L — - Gen
S o MES | [y - MES
24 O 24
= - = e
o W P wave o LN
= Lt = N P wave
= W =2 A
= .+ TFS = Welded
n £ s

ks - = -

il NPT 0 T

i} 05 1 15 2 0 0.a 1 15 2

Angle of incidence Angle of incidence
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Figure (47)-(50): Variation of the |Z, | with angle of incidence of
the incident longitudinal wave
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Figure (59)-(62): Variation of the |Zs| with angle of incidence of
the incident longitudinal wave
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the incident transverse wave
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Figure (71)-(74): Variation of the |Z5| with angle of incidence of
the incident transverse wave

CONCLUSION

In conclusion, a mathematical study of reflection and
transmission coefficients at an imperfect interface
separating micropolar viscoelastic solid half space and
fluid saturated incompressible porous half space is made
when longitudinal wave or transverse wave is incident. It
is observed that

1. The effect of incident wave is significant on
amplitude ratios. All the amplitudes ratios are
found to depend on incident waves.

2. The wvelocities of various reflected and
transmitted waves are found to be complex
valued.

3. The modulus of amplitudes ratios of various
reflected and transmitted waves depend on the
angle of incidence of the incident wave and
material properties of half spaces.
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Figure (75)-(78): Variation of the |Z, | with angle of incidence of
the incident transverse wave
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4. The effect of fluid filled in the pores of
incompressible fluid saturated porous medium is
significant on the amplitudes ratios for reflected
and transmitted waves.

5. The effect of stiffness is significant either
longitudinal wave is incident or transverse wave
is incident.

6. If we neglect the viscous effect of micropolar
viscoelastic solid then the variations in the
amplitude ratios of various transmitted waves
have been affected significantly either
longitudinal wave is incident or transverse is
incident.

7. Effect of viscosity of micropolar viscoelastic
solid is more on modulus of amplitude ratios for
transmitted waves.
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8. Effect of viscosity is more for transmitted wave

than for reflected waves.

Hence the amplitudes ratios of various reflected and
transmitted waves depend on material properties and
angle of incidence of the incident wave. The model
presented in this paper is one of the more realistic forms
of the earth models. The present theoretical results may

provide

useful  information  for  experimental

scientists/researchers/seismologists working in the area of
wave propagation in micropolar viscoelastic solid/fluid
saturated incompressible porous solid.
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