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INTRODUCTION 
Schraf (1976, 1980) presented a full-information 
relationship between three stage least squares (3SLS) and 
double h-vector class (DhVC) estimators. The DhVC is 
full-information generalization of well known h-Class 
estimators. Following Srivastava and Tiwari (1977), a 
simple derivation of the identity connecting DhVC and 3 
SLS estimators is presented in this article which will 
useful for the study of the properties the other estimators. 
 
DOUBLE h-VECTOR CLASS AND THREE-
STAGE LEAST SQUARES ESTIMATORS 
Consider a complete system of T-structural equations in 
N jointly dependent and Ʌ predetermined variables. 
Let the ith structural equation be  
푦 = 훾 푌 + 훽 푋 + 푢      
 (1) 
or 

푦 = 훿 푧 + 푢 ;  푍 = (푌푋 ),  훿 = (훾′훽′)′   
 (2) 
Where, 푦  is a column vector of T-observations on the 
jointly dependent variables to be explained, 푌  and 푋  are 
the matrices of T-observations on 푛 explanatory jointly 
dependent and 푙 explanatory predetermined variables 
respectively, 훾  and 훽  are the associated coefficient 
vector and 푢  is the column vector of T-structural 
disturbances. These disturbances are assumed to be 
temporally independent and generated by a stationary 
multivariate stochastic process with  
퐸(푢 ) = 0 
퐸 푢 푢 = 휎 퐼;  (i, j = 1,2, . . . , N)  (3) 
Where, 퐼 is the identity matrix of order T. Similarly, the 
predetermined variables are also assumed to be generated 
by a multivariate stochastic process, independently of the 
process generating disturbances, with a non-singular 
moment’s matrix. We assume that all the structural 
equations of the system are identifiable so that the system 
has been solved initially to eliminate all identities. 
Finally, we assume that the system can be solved for the 
jointly dependent variable. Let 
 푦 = 푋Π + 푉      (4) 
bethe reduced form corresponding to the explanatory 
jointly dependent variable of (1), where X is a 푇 ×
Λmatrix, assumed to be of full column rank, of the values 
taken by all Ʌ- predetermined variables and Π  is a 
Λ × 푛 matrix of parent reduced form coefficients. Let us 
define the following matrices. 

 
 푉 = ( V  푂) = (푀푌  ,푂) (5) 
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whereO is a 푇 × 푙 null matrices, 푙 being the number of predetermined variables in (1) and 
푀 = 퐼 − 푋(푋′푋) 푋′   (6) 
writing훿′ = (훿 ′ ,훿 ′ , … ,훿 ′)′, the double h-vector class estimators of the parameter vector 훿 is given by 

d̂(h1, h2 ) = s ik Zi
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whereℎ = (ℎ , ℎ , … , ℎ )′ and ℎ = (ℎ ,ℎ , … ,ℎ )′ and are 푁 × 1 vectors which fix DhVC estimator. 
If ℎ = 0 i.e. ℎ = 0,∀ 푖 = 1,2, … ,푁. 
We get 3SLS estimator given by 

d̂3SLS = s ik Zi
'Zk -V̂i
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SIMPLE DERIVATION OF IDENTITY BETWEEN DHVC AND 3SLS ESTIMATORS 
Scharf's identity between DhVC and 3SLS estimators is given by 
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we present a simple derivation of this identity. 
Noticing that for any two matrices 1Q  and 2Q  
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provided 1Q  is invertible. Consider 
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So that 
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and using (13), we find from (7) 
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d̂(h1, h2 ) = d̂3SLS - s ik Zi
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Which is same as (9). 
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