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Abstract: An analytical study for the problem of unsteady mixed 
convection with thermal radiation and first-order chemical 
reaction on magneto hydrodynamic boundary layer flow of an 
electrically conducting visco-elastic fluid past a vertical 
permeable plate has been investigated. Slip boundary layer 
condition is applied at the porous interface. The classical model 
is used for studying the effect of radiation for optically thin 
media. The perturbation scheme has been used to solve the 
problem. Analytical expressions for dimensionless velocity, 
temperature, concentration fields, skin friction co-efficient, rate 
of heat transfer and Sherwood number have been obtained. The 
profiles of the velocity and skin friction have been presented 
graphically for different values of the visco-elastic parameters 
with the combination of the other flow parameters encountered in 
the problem under investigation. 
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1. Introduction 
Mixed convection flows with simultaneous heat and 
mass transfer in porous media under the influence of 
a magnetic field and chemical reaction are frequently 
encountered in many transport processes in nature. 
Its application is found in many industries viz. in the 
chemical industry, power and cooling industry for 
drying, chemical vapour deposition on surfaces, 
cooling of nuclear reactors and magnetohyrodynamic 
power generators. Simultaneous heat transfer and 
evaporation of crude oil in different stages of refining 
process are physical examples of heat and mass 
transfer. Many transport processes exist in nature and 
in industrial applications in which the simultaneous 
heat and mass transfer occurs as a result of combined 
buoyancy effects of diffusion of chemical species. A 
comprehensive description of the theoretical work for 
both laminar and turbulent mixed convection 
boundary layer flows has been given in a review 
paper by Chen and Armaly [1] and in the book by 
Pop and Ingham [2]. The problem of mixed 

convection under the influence of magnetic field has 
attracted numerous researchers viz. Soundalgekar et 
al. [3], Elbasheshy [4], Abel et al. [5, 6] in view of its 
applications in geophysics and astrophysics. In the 
above mentioned  
studies the radiation effect is ignored. But the effects 
of thermal radiation heat transfer cannot be neglected 
when technological processes take place at high 
temperature (Siegel and Howell [7], Modest [8]). 
Recent developments in hypersonic flights, missile 
re-entry rocket combustion chambers, gas cooled 
nuclear reactors and power plants for inter planetary 
flight have focussed the attention of many 
researchers  [9]-[17]. 

Convection in porous media has gained 
significant attention in recent years because of its 
importance in engineering applications. Reviews of 
the applications related to convective flows in porous 
media can be found in the book by Nield and Bejan 
[18]. The fundamental problem of flow through and 
past porous media has been discussed by Cheng [19] 
and Rudraiah [20] on thermal radiation as a mode of 
energy transfer and emphasize the need for inclusion 
of radiative transfer in these processes. The 
inadequacy of the no-slip condition is quite evident 
in polymer melts which often exhibit microscopic 
wall slip. The boundary conditions to be satisfied at 
the interface between a porous medium and fluid 
layer are the matching of velocity and stresses. 
Several authors [21]-[26] have studied in this line.  

The combined effect of heat and mass 
transfer with chemical reaction in porous medium 
has important engineering applications e.g. tubular 
reactors, oxidation of solid materials and synthesis of 
ceramic materials. Chemical reaction can be codified 
as either a heterogeneous or homogeneous process. 
This depends on whether it occurs at an interface or a 
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single-phase volume reaction. In most chemical 
reactions, the reaction rate depends on the 
concentration of the species itself. A chemical 
reaction is said to be of first order, if the rate of 
reaction is directly proportional to concentration 
itself. During chemical reaction between two species 
concentration heat is also generated. Chemical 
reaction effects on heat and mass transfer laminar 
boundary layer flow have been discussed by various 
authors [27, 28, 29, 30, 31] in various situations. For 
the problem of coupled heat and mass transfer in 
MHD, the effect of Ohmic heating are not studied in 
the above investigations. However, it is more 
realistic to include Ohmic effect in order to explore 
the impact of the magnetic field on the thermal 
transport in the boundary layer. The effect of Ohmic 
heating on the MHD free convective heat transfer has 
been examined by Hossain [32]. Chaudhary et al. 
[33] have analyzed the effect of radiation on heat 
transfer in MHD mixed convection flow with 
simultaneous thermal and mass diffusion from an 
infinite vertical plate with viscous dissipation. Pal 
and Mondal [34] analyzed the effect of variable 
viscosity on MHD non-Darcy mixed convective heat 
transfer over a stretching sheet embedded in a porous 
medium with non-uniform heat source/sink and 
Ohmic dissipation. Recently, Pal and Talukdar [35] 
studied the combined effect of MHD and Ohmic 
heating in unsteady two-dimensional boundary layer 
slip flow, heat and mass transfer of a viscous 
incompressible fluid past a vertical permeable plate 
with the diffusion of species in the presence of 
thermal radiation incorporating the first-order 
chemical reaction. They used the classical model 
introduced by Cogley et al. [36] for the radiation 
effect. In the present study, an attempt has been made 
to extend the problem studied by Pal and Talukdar to 
the case of visco-elastic fluid characterised by 
second-order fluid. 

The constitutive equation for the second-
order fluid is of the form 

2
132211 )(AAApIS      (1) 

where S  is the stress tensor, p is hydrostatic 
pressure, I is unit tensor, )2,1( nAn are the 
kinematic Rivlin –Ericksen tensors, 321 ,,  are 
the material co-efficients describing the viscosity, 
visco-elasticity and cross-viscosity respectively. The 
material coefficients 321 ,,   are taken constants 
with 1 and 3 as positive and 2 as negative 
(Coleman and Markovitz [37]). The equation (1) was 
derived by Coleman and Noll [38] from that of 
simple fluids by assuming that the stress is more 

sensitive to the recent deformation than to the 
deformation that occurred in the distant past. 
 

2. Formulation of the problem 
We consider unsteady two-dimensional visco-elastic 
flow of an incompressible, electrically conducting 
and heat-absorbing fluid past a semi-infinite vertical 
permeable plate embedded in a uniform porous 
medium which is subject to slip boundary condition 
at the interface of porous and fluid layers. A uniform 
transverse magnetic field of magnitude 0B  is applied 
in the presence of radiation and concentration 
buoyancy effects in the direction of *y - axis. The 
transversely applied magnetic field and magnetic 
Reynolds number are assumed to be very small so 
that the induced magnetic field and the Hall effect 
are negligible. It is assumed that there is no applied 
voltage which implies the absence of an electric 
field. Since the motion is two dimensional and length 
of the plate is large enough so all the physical 
variables are independent of *x . The wall is 
maintained at constant temperature wT  and 
concentration ,wC  higher than the ambient 

temperature T and concentration ,C respectively. 
Also, it is assumed that there exists a homogeneous 
first-order chemical reaction with rate constant R 
between the diffusing species and the fluid. It is 
assumed that the porous medium is homogeneous 
and present everywhere in local thermodynamic 
equilibrium. Rest of properties of the fluid and the 
porous medium are assumed to be constant. The 
governing equations for this investigation are based 
on the balances of mass, linear momentum, energy 
and concentration species. Taking into consideration 
these assumptions, the equations that describe the 
physical situation can be written as follows: 
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Mass Diffusion Equation: 
 
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where ** , yx  are the dimensional distances along 
and perpendicular to the plate, respectively. 

**and vu are the components of dimensional 
velocities along *x and *y directions, respectively. 
g is the gravitational acceleration, *T is the 
dimensional temperature of the fluid near the plate, 

T is the free stream dimensional temperature, *C is 
the dimensional concentration, C is the free stream 
dimensional concentration. T  and C are the 
thermal and concentration expansion coefficients, 
respectively. *p is the pressure, pC is the specific 

heat of constant pressure, 0B is the magnetic field 

coefficient, *
rq is the radiative heat flux,  is the 

density,  is the thermal conductivity, 1 is the 
magnetic permeability of the fluid, D is the 
molecular diffusivity, 0Q is the dimensional heat 

absorption coefficient, *
1Q  is the coefficient of 

proportionality of the absorption of the radiation, R  
is the chemical reaction parameter and 

).2,1(,  ii
i 


 The fifth and the sixth terms on 

R.H.S. of the momentum equation (3) denote the 
thermal and the concentration buoyancy effects, 
respectively. The second and the third term on the 
R.H.S. of equation (4) denote the inclusion of the 
effect of the thermal radiation and heat absorption 
effects, respectively.  
The radiative heat flux is given by (Cogley et al. 
[36]) as  
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where 
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  is the absorption 

coefficient at the wall and be is Planck’s function. 
 
Under these assumptions, the appropriate boundary 
conditions for velocity involving slip flow, 
temperature and concentration fields are defined as   
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where wC  and wT  are the wall dimensional 
concentration and temperature, respectively. 1 is the 

permeability of the porous medium, *n is the 
frequency and 1 is the porous parameter. From 
equation (3), it is clear that the suction velocity at the 
plate surface is a function of time only. Hence the 
suction velocity normal to the plate is assumed in the 
form 
  **

10
* tnAeVv     (10) 

where A  is a real positive constant,  and A are 
small less than unity, and 0V is a scale of suction 
velocity which is non-zero positive constant. 
 

Outside the boundary layer, equation (3) gives 
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In order to write the governing equations and 
boundary conditions in dimensionless form, the 
following non-dimensional quantities are introduced  
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In view of the above non-dimensional 
variables, the basic field of equations (3)-(5) can be 
expressed in non-dimensional form as 
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where Gr  is the thermal Grashof number, Gm is the 
solutal Grashof number, Pr is the Prandtl number, 
M is the magnetic field parameter, F is the radiation 
parameter, Sc  the Schmidt number,  is the heat 
source parameter,  is the visco-elastic parameter 
and  is the chemical reaction parameter and 1Q is 
the absorption of radiation parameter which are 
defined as follows: 
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The corresponding boundary conditions are 
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parameter. 
 

3. Method of solution 
The set of partial differential equations (13)-(15) 
cannot be solved in closed-form. However, it can be 
solved analytically after these equations are reduced 
to a set of ordinary differential equations in 
dimensionless form which can be done by 
representing the velocity ,u temperature   and 
concentration C as 
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Substituting (19)-(21) into equations (13)-(15) and 
equating the harmonic and non-harrnonic terms, and 
neglecting the higher order of ,)( 2o we obtain  
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where the prime denotes ordinary differentiation with 
respect to .  The corresponding boundary conditions 
are  
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The solutions of the equations (24)-(27) 
consistent with the boundary conditions (28) and (29) 
are obtained but not presented here for the sake of 
brevity. 
 

For small shear rate we note that 1 .  Substituting  
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into equations (22), (23) and boundary conditions 
(28), (29) up to the first order of  and comparing 
the coefficients of like powers of , we obtain 
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The corresponding boundary conditions are  
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Solutions of the equations (31)-(34) consistent with 
the boundary conditions (35) and (36) are obtained 
but not presented here for the sake of brevity. 
 

The non-dimensional skin friction coefficient at the 
plate is given by 
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The rate of heat transfer coefficient, which in 
non-dimensional form, in terms of Nusselt number, is 
given by  
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Sherwood number is given by 
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where 
1

0Re


xV
x   is the local Reynolds number. 

 

4. Results and Discussion 
In the present investigation, we have analyzed the 
heat and mass transfer on mixed convection flow of a 
visco-elastic incompressible, electrically conducting 
fluid over an infinite vertical porous plate in the 
presence of magnetic field and thermal radiation 
using the classical model for the radiating heat flux. 
We have obtained the results for varieties of physical 
parameters, which are illustrated by means of graphs. 
The purpose of this study is to bring out the effects of 
the visco-elastic parameter   on the governing flow 
with the combination of the other flow parameters. 
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All the corresponding results for Newtonian fluid are 
obtained by setting .0  

Figures 1-10 depict the velocity profile u in 
the boundary layer against  to observe the visco-
elastic effects for various sets of values (Table.1) of 
the   thermal  Grashof  number ,Gr   solutal Grashof 
number ,Gm  Schmidt number ,Sc absorption 
radiation parameter ,1Q chemical reaction parameter 

, radiation parameter ,F heat source parameter 
, magnetic field parameter ,M Porous permeability 

parameter 1  with fixed values of 
,1.0,3.0,3.0,3Pr  nA  and .2t It is 

evident from the figures that the velocity u in the 
boundary layer increases with the increasing values 
of the visco-elastic parameter 

, )04.0,02.0,0(  in comparison with the 
Newtonian cases when               (i) Gr increases 
(Figs. 1 and 2), (ii) Gm  increases (Figs. 2 and 3), 
(iii) Sc increases (Figs. 3 and 4), (iv) 1Q increases 
(Figs. 4 and 5), (v)   increases (Figs. 5 and 6), (vi) 

F increases (Figs. 6 and 7), (vii)   increases (Figs. 
7 and 8), (viii) M increases (Figs 8 and 9), (ix) 1  
increases (Figs. 9 and 10) ; by keeping other flow 
parameters fixed. 

Also, we note from the figures that the 
velocity u in the boundary layer increases for 
Newtonian as well as non-Newtonian cases when 
Gr (Figs. 1 and 2), Gm (Figs 2 and 3), 1 (Figs. 9 
and 10) increase whereas reverse trend is seen for 
Sc (Figs. 3 and 4), and  (Figs. 7 and 8). 

 

Table1: Description of various cases: 
 

Cases Gr Gm Sc 
1Q    F   M 

1  
I 2 0 2 0.3 0.3 2 2 0.4 0.3 
II 4 0 2 0.3 0.3 2 2 0.4 0.3 
III 4 2 2 0.3 0.3 2 2 0.4 0.3 
IV 4 2 4 0.3 0.3 2 2 0.4 0.3 
V 4 2 4 5 0.3 2 2 0.4 0.3 
VI 4 2 4 5 0.5 2 2 0.4 0.3 
VII 4 2 4 5 0.5 4 2 0.4 0.3 
VIII 4 2 4 5 0.5 4 4 0.4 0.3 
IX 4 2 4 5 0.5 4 4 1.4 0.3 
X 4 2 4 5 0.5 4 4 1.4 0.5 
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                    Fig. 1: Variation of u against   for case I. 
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                  Fig. 2: Variation of u against   for case II. 
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                               Fig. 3: Variation of u against  for case 
III. 
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                             Fig. 4: Variation of u against   for case IV. 
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                             Fig. 5: Variation of u against   for case V. 
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Fig. 6: Variation of u against   for case 
VI. 
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                            Fig. 7: Variation of u against   for case VII. 
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                         Fig. 8: Variation of u against   for case VIII. 
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                     Fig. 9: Variation of u against   for case IX. 
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                            Fig. 10: Variation of u against   for case X. 
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                           Fig. 11: Variation of  against t for case I. 
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                            Fig. 12: Variation of  against t for case II. 
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Fig. 13: Variation of  against t for case III. 
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                         Fig. 14: Variation of  against t for case IV. 
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                            Fig. 15: Variation of  against t for case V. 
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                           Fig. 16: Variation of   against t for case VI. 
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                           Fig. 17: Variation of  against t for case VII. 
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                         Fig. 18: Variation of  against t for case VIII. 
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                             Fig. 19: Variation of   against t for case 
IX. 
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                             Fig. 20: Variation of  against t for case X. 

 

Figures 11-20 represent the non-
dimensional shearing stress  against t  to observe 
the visco-elastic effects for various sets of values 
given in table 1. Figures 11-20 reveal that the skin 
friction coefficient  decrease with the increasing 
values of the visco-elastic parameter 
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13 and 14), (iv) 1Q increases (Figs. 14 and 15), (v) 
  increases (Figs. 15 and 16), (vi) F increases 
(Figs. 16 and 17 ), (vii)  increases (Figs. 17 and 
18), (viii) M increases (Figs. 18 and 19), and (ix) 

1 increases (Figs. 19 and 20) keeping other flow 
parameters constant. 

It is seen from the figures 11-20 that the 
skin friction coefficient increase with increasing 
time t  for Newtonian as well as non-Newtonian 
fluid in all the cases of table 1. Further it is found 
that skin friction coefficient    increase for both 
Newtonian and non-Newtonian cases with the 
increasing values of Gr (Fig. 11 and 12), Gm  
(Figs. 12 and 13), Sc  (Figs.13 and 14), 1Q (Figs. 
14 and 15), M (Figs. 18 and 19), whereas reverse 
trend is seen for   (Figs. 17 and 18), 1 (Figs. 19 
and 20). 

It has also been observed that the 
temperature field, concentration field, Nusselt 
number and Sherwood number are not significantly 
affected by the visco-elastic parameter.  

 

5. Conclusion 
The above study brings out the flowing results of 
physical interest:  

(1) The velocity u in the boundary layer 
increase with the increasing values of  
the visco-elastic parameter   in 
comparison with the Newtonian cases. 
Also, velocity u increase as any one values 
of the Grashof number for heat transfer, 
Solutal Grashof number, and porous 
permeability parameter ( 1 ) increases but it 
decrease as any of the values of the 
Schmidt number and heat source parameter 

)( increases.  
(2)  Skin friction increase with the increasing 

time for both Newtonian and non-
Newtonian fluid. Further, it is found that 
skin friction co-efficient increase for both 
Newtonian and non-Newtonian cases with 
the increasing values of Grashof number, 
Schimdt number, absorption radiation 
parameter, or Hartmann number whereas 
skin friction decrease for heat source 
parameter or porous permeability 
parameter increasing. 
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