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Abstract: Support vector machines (SVM) methods have become 
increasingly popular tools for data mining tasks viz., 
classification, regression and novelty detection. The present 
paper deals with classification of Indian industries using SVM. 
Industries stable for one month period in NIFTY was selected, of 
which 50 companies in NIFTY, 32 were found to be stable. 
Twenty eight key financial ratios of these companies were taken 
for a period of five financial years (April 2007 to March 2012). 
Fuzzy clustering and SVM were used to explore the financial 
data. Principal component analysis (PCA) was applied and it 
reduced the twenty eight financial ratios into seven components. 
Thereafter, fuzzy clustering was performed on scores of PCA and 
was formed into two groups which were categorized into high 
and low performing industries based on their mean values. SVM 
was used as a classifier of the industries and it was compared 
with well known and old classification technique, Linear 
discriminant analysis (LDA). The classification accuracy in 
training and testing data set for SVM was 97.32% and 100 % 
whereas for LDA it was 87.29 and 93.75% respectively. 
Therefore, the present study concludes that SVM performed 
better than LDA in the classification of industries. 
Key words: Financial Ratio, Classification, Support Vector 
Machines, Fuzzy Clustering, Principal Component Analysis. 
1. Introduction 
Livelihood of the people changes due to the 
development of economy in the country and especially 
in developing countries, industries plays a vital role in 
the development of the country’s economy. According 
to [6] one-third of the population of the world lived in 
poverty in 1981, whereas the share was 18% in 2001.  
This huge decline was due to the economic 
development in India and China. Indian Gross domestic 
product (GDP) increases from 3.9 in 2001 to 7.2 in 
2011. In this, the contribution of industries was 20.16, 
second to services sector contribution of 65.22%. Rise 
of industries in a country boost the employment 
opportunity, income and saving, economic scale and 
farm productivity.  On the other hand it declines the 
poverty, crime, society imbalance, etc. Due to 
globalization and liberalization in Indian government 
policy, many new industries from inside and outside the 
county has emerged in recent years but it increases the 
competitive nature to survive which resulted the 
industries to monitor their performances regularly 
which is not an easy task. One of the ways to supervise 
them is by financial ratios and therefore evaluation on 
the performances of the industries is inevitable. A 

support vector machine (SVM) is a training algorithm 
for learning classification and regression rules from 
data ([23], [36], [7], [21]). SVM is applied successfully 
in many areas such as face detection ([12], [2], [29], 
[14] ), image classification ([38], [8]), object 
recognition ([28], [37], [26]), hand written / digital 
recognition ([13], [3], [22], [1], [16]), speaker speech 
recognition ([5], [33],  [24] ), gender classification 
([17], [35], [10], [27]), text classification ([32], [18]) 
etc.,. Several recent studies have reported that SVM is 
capable of rendering higher performance in terms of 
classification accuracy than other data classification 
([11], [34]). Therefore, the present paper deals with 
usage of SVM as a tool to classify the Indian industries 
then to check whether SVM classifies Indian industries 
better than Linear Discrinant Analysis (LDA). Rest of 
the paper is organized as follows; section two deals 
with the selection of samples, data description and 
methodology used in the present study. Brief 
introduction of data analysis techniques viz., principal 
component analysis for data reduction, fuzzy clustering 
for clustering, the industries into homogenous groups 
and SVM classifier are described in section three. 
Findings and discussions of the results are presented in 
section four and conclusion in section five.  
 

2. Data and methodology 
2.1 Sample selection and data description 
The study was analytical in nature and the present study 
uses the latest available published secondary data 
starting from April 2007 to March 2012. The units of 
analysis include 50 industries that are listed on Nifty. 
Thirty two industries were filtered based on the 
following criteria. i) The industries must be listed on 
Nifty. ii)  The industry must be stable in the list of Nifty 
for period of a month (1st - 30th September, 2012). iii) 
The data of variables for industries must be available 
for the period of study.        iv) Financial service based 
industry viz., banks, financial intuitions etc., were 
excluded. Financial ratios provide a quick and relatively 
simple means of examining the financial condition of 
an industry since it is of very good help when 
comparing the financial health of different businesses 
[19]. Therefore, to identify the financial performance of 
Indian industries, financial ratios of the industries were 
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used. By carefully examining the previous studies 28 
most important financial ratios were selected. Financial 
ratios were obtained from income statements, balance 
sheet, cash flow data sheet, etc., of the industries. For 
this study, these ratios were extracted from money 
control web page (www.moneycontrol.com) and the 

needed financial ratios were calculated. These ratios 
were selected to assess profitability, investment values, 
liquidity, solvency, debt coverage, management 
efficiency, profit and loss. The variables (financial 
ratios) used and its codes are shown in Table 2.1.1. 

 

Table 2.1.1. List of financial ratios and its codes 
Financial Ratio Codes Financial Ratio Codes 

Operating Profit Per Share  OPPS Interest Cover INC 
Net Operating Profit Per Share  NOPPS Total Debt to Owners Fund TDTOF 
Operating Profit Margin OPM Financial Charges Coverage Ratio FCCR 
Gross Profit Margin GPM Inventory Turnover Ratio ITR 
Cash Profit Margin CPM Debtors Turnover Ratio DTR 
Net Profit Margin NPM Total Assets Turnover Ratio TATR 
Return On Capital Employed ROCE Number of Days In Working Capital NDWC 
Return On Net Worth RONW Material Cost Composition MCC 
Return on Assets Including Revaluations ROAIR Selling Distribution Cost Composition SDCC 
Return on Long Term Funds ROLTF Expenses Total Sales ETS 
Current Ratio CUR Dividend Payout Ratio Net Profit DPRNP 
Quick Ratio QUR Dividend Payout Ratio Cash Profit DPRCP 
Debt Equity Ratio DER Earning Retention Ratio ERR 
Long Term Debt Equity Ratio LTDER Cash Earning Retention Ratio CERR 

 

 

2.2 Methodology 
Firstly, 28 financial ratios which were used in the 
present study are normalized [0, 1] using the formula. 
푦 =  푥 −  푚푖푛 (푥 푚푎푥  푥 −  푚푖푛 푥  

For the normalized variables, principal component 
analysis was applied to avoid the influence of 
correlation among the variables and, the principal 
scores obtained were used as the variables for the rest 
of this study. Secondly, fuzzy clustering was applied to 
the principal scores to group the industries. SVM 
classifier with different kernels and Linear discriminant 
analysis (LDA) were performed to compare 
classification efficiency of the classification tools. 
 

3. Data analysis techniques 
3.1 Principal component analysis (PCA) 
The technique of Principal component analysis (PCA) 
was first described by [25] and is one of the simplest 
techniques of the multivariate methods. The main 
objectives of PCA are to identify new meaningful 
underlying variables and discover or reduce the 
dimensionality of the data set. PCA involves a 
mathematical procedure that transforms a number of 
correlation variables into a number of uncorrelated 
variables called principal components.  The lack of 
correlation is most important and is a useful property 
because the uncorrelated variables are measuring 
different dimensions in the data. These uncorrelated 
variables are ordered based on its variation i.e., largest 
amount of variation displayed first, followed by second 
largest amount [20]. 
Steps involved in construction of PCA 
Let us consider p variables say 푥 ,푥  ,푥 , … .  ,푥  for the 
study 
1) First normalize the data. 
2) Calculate the correlation matrix C. 

3) Find the eigen values 휆 , 휆 , 휆 , …  ,  휆  and the 
      corresponding eigen vectors 푎 ,푎 ,푎 ,  …  ,  푎 . 
The       coefficients of the ith principal component are 
the       given by 푎  while 휆  is its variance. 
4) Discard any components that only account for a 
small      proportion of the variation in the data. 
 

3.2 Fuzzy Clustering (FC) 
Clustering is a division of data into groups of similar 
objects. There are different clustering techniques 
available of which most of them belongs to 
hard/conventional clustering (every data points belongs 
to one unique cluster). In many situations, clusters are 
not well separated as a result, the data point may or may 
not belong to a particular cluster. Fuzzy clustering 
differs from other clustering techniques. In fuzzy 
clustering, object may belong to more than one cluster 
with varying degrees of membership. Fuzzy cluster 
analysis has its origins by [31] and the fuzzy clustering 
approach is based on the fuzzy set theory proposed by 
[39]. There are different approaches for fuzzy 
clustering. Fuzzy k – means, the earliest methods was 
proposed by [9] and [3] wherein Fuzzy k-means is a 
generalization of the crisp k-means clustering. In the 
present paper, FUNNY algorithm was used attributed to 
[15]. The objective function in which the dissimilarity 
or distance measure is a L1 expression (not squared) is 
used, which makes it more robust than fuzzy k- means 
[30]. FUNNY aims at the minimization of the following 
objective function. 

푂푏푗푒푐푡푖푣푒 퐹푢푛푐푡푖표푛  퐶 =  
∑ 푢  푢  푑(푖, 푗),

2∑ 푢 
 

Where 푑(푖, 푗) represent the given distance (or 
dissimilarities) between objects i and j. 
     푢  = the unknown membership of object 푖 to cluster 
n. 
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       푚 = the number of clusters that the fuzzy clustering 
               solution will have.  
        푛 = the number of observation in the data set.  
The membership functions are subject to the 
constraints.  

i) 푢  ≥ 0 ∀ 푖 = 1, … , 푛; 푟 = 1, … . ,푚 
                ii) ∑ 푢 = 1 for 푖 = 1, … . ,푛 
These constraints imply that membership cannot be 
negative and that each object has a certain total 
membership distributed over different clusters. By 
convention, the above mentioned total membership is 
normalized to 1. The solution to above mentioned 
optimization problem is iterative. 
To test goodness of fit for fuzzy clustering, two 
methods were used. 
i) [15] proposed the silhouette statistic for assessing 
clusters and estimating the optimal number. For 
observation 푖, let 푎(푖) be the average distance to other 
points in its cluster, and 푏(푖) the average distance to 
points in the nearest cluster besides its own nearest is 
defined by the cluster minimizing this average distance 
followed by silhouette statistic defined by 

푆(푖) =  
푏 (푖)−  푎(푖)

max{ 푎(푖) −  푏(푖)} 

A point is well clustered if 푆(푖) is large. [15] Proposed 
to choose the optimal number of clusters 푘 as the value 
maximizing the average 푆(푖) over the data set.  
ii) Dunn’s partition coefficient (DPC) was introduced to 
identify the compact and well separate cluster. Each 
object in the fuzzy cluster has a membership and if it is 
1 in one cluster and 0 for all other cluster then cluster is 
a hard entirely. This coefficient can be use to know 
whether cluster is hard or fuzzy nature. DPC is 
computed by the following formula for which values lie 
between(  , 1). 

퐷 =  
푢
푛

 

Where 
           푢 = final membership matrix, 
         푢  = membership value of the ith element to the 
rth                   cluster. 
            푛 = number of observation and 
           푚 = number of cluster. 
This can be normalized and normal version of the 
Dunn’s partition coefficient (DPC) was obtained from 
the formula given below. The values of normalized 
DPC always lie in range (0, 1). For a good clustering 
solution, this value should be high. 

푁퐷 =  
퐷  −  1

푚
1 −  1

푚
 =  

푚 퐷 (푢) −  1
푚 −  1

 

3.3. Support Vector Machines (SVM) 
SVM is an emerging machine learning technique in the 
field of data mining. It a novel learning machine 
introduced first by [36]. A brief mathematical 
background of SVM is given below. 

 
Figure 3.1. Optimal Separating Hyper plane for linear 

 

In figure 3.1 there are two types of dots one is green in 
color and the other is white representing two kinds of 
samples. S is the separating line and P1 and P2 are the 
closest lines parallel to the separating line of the two 
class sample vectors. The distance between P1 and P2 
is called the margin. 
For linear case,  
 

Given a training set belong to two separate classes 
say(푥  ,  푦 ), where 푖 = 1, 2, 3, …  ,  푛, 푥 ∈  푅 , 푦 ∈  −1,  1  
with a hyperplane,  
 
     (휔 .푥) +  푏 = 0      (3.1) 
equ (3.1) is the separating hyperplane equation. The 
training class(푥  ,  푦 ) should satisfy 

푦 [(휔.푥) +  푏] ≥ 1  where 푖 = 1, 2, 3, …  ,  푛         (3.2) 
The distance of point 푥 to the hyperplane (휔 ,푏) 

is (휔 ,푏;푥) = |  .   |
|| ||

  . The optimal hyperplane is 
given by maximizing the margin푑, subject to equation 
(3.2). The margin can be given by휌(휔 , 푏) =  

|| ||
 . 

Hence the hyperplane that optimally separates the data 
is the one that minimizes 
 

∅(휔) =  || ||         (3.3) 
 

The Lagrange function of (3.3) under constraints (3.2) 
is,  
 

∅(휔 ,푏; 푎) =  ||휔||  –∑ 훼 (푦 휔, 푥 +  푏] − 1 (3.4) 
 

The optimal classification function, if solved, is  
 

푓(푥) =  푠푔푛(휔∗  .  푥) +  푏∗ 
 

For non linear case,  
Let ⏀: 푅  →  퐻 be a non linear map which transforms 
 푥 from the input space into the feature space H. A 
kernel is a function 푘,   ∀ 푥  ,푥  ∈  푅 ,    퐾(푥 ,푥 ) =
 < ⏀(푥 ), ⏀(푥 ) > Then, for the nonlinear 
classification, to determine the optimal hyperplane 
equals to solve the following constrained quadratic 
optimization problem. 
 

 Maximize the objective function 
 

푄(훼) =  ∑ 훼  −   ∑ 훼  훼  푦  푦  퐾 푥 ,푥    (3.5) 
 

Subject to the constrains 
∑ 훼  푦 = 0,훼  ≥  0, 푖 = 1,2, …  ,푛                    (3.6) 
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where 훼  is the Lagrange multiplier for each sample. 
 

 The corresponding separating function is  
 

푓(푥) = 푠푔푛 (∑ 훼∗  푦  푘(푥 , 푥) +  푏∗ )                (3.7) 
 

This is the so- called SVM. 
 

Kernels used in this paper are as follows 
 

LINEAR 퐾 푥 ,  푥 = 푥 푥   

POLYNOMIAL 퐾  푥  ,푥 = (훾 푥 푥  + 푟)^푑  ,     훾 > 0 

RBF 퐾  푥  ,푥 = exp (−훾 푥 − 푥  ) 훾 > 0 

SIGMOID 퐾  푥  ,푥 = 푡푎푛ℎ(훾 푥 푥  + 푟) 

4. Findings and discussion 
4.1 Results of principal component analysis (PCA) 
 

The application of the PCA is to reduce the 
dimensionality of the data set and also to avoid the 
influence of correlation among the variables. As 
discussed earlier raw data set of 28 financial ratios of 
the Indian industries are normalized and robust 
principal component analysis was performed. This was 
done by using R-2.15.1 software. This produce eigen 
vector (푒 ) and eigen value(휆 ). The eigen vector were 
ordered so that 휆 <  휆   . Thus the lower order 
eigenvectors encode the majority of the variances. 
 

Table 4.1.1. Eigen values, percentage and Cumulative 
Percentage of total variance 

Components Eigen 
Value 

% 
Variance 

Cumulative 
% variance 

PC2 6.6515 23.7555 23.7555 
PC1 5.7424 20.5085 44.264 
PC7 3.5156 12.5557 56.8197 
PC3 2.9115 10.398 67.2177 
PC5 1.4938 5.3351 72.5528 
PC6 1.4043 5.0153 77.5681 
PC4 1.1610 4.1465 81.7146 

 

From table 4.1.1, by taking 1 for the eigen value as the 
cutoff point we have selected the seven components, the 
selected components approximately represents 82% of 
the variance structure of the raw data. Figure 4.1.1 
Shows the 3D scatterplot of first 3 principal 
components as axes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 1.1  3D plot of first three Principal Components 
 

4.2 Results of fuzzy clustering  
Fuzzy clustering was applied to the principal scores 
extracted from PCA to group the industries.  Squared 
Euclidean distance is used as the metric of dissimilarity 
in the data.  Squared Euclidean distance between two 
points, a and b, with k dimensions is calculated as 
(4.2.1). When taken square root of equation (8), it 
becomes Euclidean distance.  
 

    퐷 =  ∑ (푎 −  푏 )                                          (4.2.1) 
 

Fuzzy clustering was carried out next using the [15] 
algorithm used in FUNNY package.  R-2.15 software 
package is used for analyzing the data.  The process of 
selecting the best clusters is subjective in nature.  
Several clustering solutions are generated using 
different number of clusters, different values of fuzzier 
and different dissimilarities.  Based on various indices 
such as the silhouette and Dunn’s partition index for 
fuzzier 1.25 and square euclidean dissimilarity, 2 
clusters are chosen. The final solutions of various 
indices and silhouette using fuzzier at 1.25 are 
presented below table 4.2.1. 
 

Tabl 4.2.1. Summary of number of Fuzzy Clustering and its 
Silhouette and Dunn’s Index  

(m = 1.25, Metric = Square Euclidean dissimilarity) 

Number of 
clusters S(i) 

Dunn’s 
Partition 

Index  

 
Normalized 

Dunn’s 
Partition Index 

 
2 0.31 0.79253 0.75103 
3 0.30 0.77579 0.71974 
4 0.26 0.74178 0.65571 
5 0.16 0.71312 0.56969 
6 0.25 0.74510 0.49020 

For the best clustering, silhouette plot and fuzzy 
clustering plot are shown below in Figure 4.2.1 and 
4.2.2. 

 
 

Figure 4.2.1.  Silhouette plot for K = 2, Fuzzier = 1.25 and 
Square Euclidean dissimilarity 
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Figure 4.2.2 Fuzzy Clustering plot for K = 2, Fuzzier = 1.25 

  and Square Euclidean dissimilarity 
 

On the bases of membership coefficients, 160 industries 
are grouped into two groups.  Based on the mean 
values, these two groups are categories as high and low 
performing industries. 60 industries belong to high 
performing and 100 industries in low performing group. 
 

4.3 Comparison of SVM and LDA 
The whole data set used in fuzzy clustering was divided 
into two sets viz., training and testing data. It was done 
in standard spreadsheet software. Approximately, 70% 
of the industries were assigned to the training sample. 
The training data set resulted in 112 industries and the 
remaining 48 industries were assigned to the test 
sample. SVM classifier was performed with different 
kernels for training and testing data set. The 
performance of SVM was compared with a well know 
classification method LDA. From Table 4.3.1 and 4.3.2 
it was observed that accuracy and error rate of SVM for 
training and testing was (97.321 and 100.00%) and 
(2.679 and 0.000%) whereas for LDA (89.286 and 
93.750%) and (10.714 and 6.250%) respectively. 
 

Table 4.3.1. Confusion matrix of training and testing for SVM 
(linear) 

 Training Testing 

 A
ct

ua
l 

Predicated by Model Predicated by Model 

 HIGH LOW   HIGH LOW  

H
IG

H
 

42 2 44 

H
IG

H
 

16 0 16 

L
O

W
 

1 67 68 

L
O

W
 

0 32 32 

  43 69 112  16 32 48 
AR 97.321  100.00 
ER 02.679  0.000 

AR – Accuracy rate, ER – Error rate 
 

 
 
 
 
 

 
 
Table 4.3.2. Confusion matrix of training and testing for LDA 

 
Table 4.3.3 shows the accuracy and error rate of SVM 
for different kernels with gamma 0.142 and cost 10. 
Error rate of SVM (RBF) was 0 and 2.083%. Similarly 
for SVM (Polynomial and Sigmoid) it was 1.786 and 
13.793% and 2.083 and 9.231% for training and testing 
data sets indicating SVM with RBF kernel performed 
well in classification than other kernels and LDA. 
 

Table 4.3.3 Results of classification efficiency of SVM  (RBF, 
Polynomial and Sigmoid) 

    
 
 
 
 
 
 
 
 
 
  
                AR – Accuracy rate, ER – Error rate 
 

Comparison of accuracy rate for SVM with different 
kernels and LDA for training and testing are shown in 
Figure 4.3.1. Overall, the result shows other than 
sigmiod kernel, SVM outperformed well than LDA. 
Therefore, it can be concluded that performance of 
SVM in classifying the Indian industries is better than 
LDA. 
 

 
Figure 4.3.1. Comparison of accuracy rate for SVM with 

different kernels and LDA for training and testing. 
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Accuracy Rate of SVM and LDA

SVM-RBF SVM-Polynomial SVM-Sigmoid
SVM-Linear LDA

 Training Testing 

 A
ct

ua
l 

Predicated by Model Predicated by Model 

 HIGH LOW   HIGH LOW  

H
IG

H
 

35 9 44 

H
IG

H
 

15 1 16 

L
O

W
 

3 65 68 

L
O

W
 

2 30 32 

  38 74 11
2  17 31 48 

AR 89.286  93.750 
ER 10.714  6.250 

 SVM 
Kernels RBF Polynomial Sigmoid 
Gamma 0.142 0.142 0.142 
Cost 10 10 10 

TRAINING 
AR 100.000 98.214 86.207 
ER 0.000 1.786 13.793 

TESTING 
AR 97.917 97.917 90.769 
ER 2.083 2.083 9.231 
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Conclusion 
The present study was evaluated to check whether SVM 
classifies Indian industries better than Linear Discrinant 
Analysis (LDA). Four different kernels for SVM viz., 
RBF, Polynomial, Sigmoid and Linear were used and 
compared with the classification results of each other 
and also with LDA. The result showed that error rate of 
SVM (Linear) was 2.679 whereas LDA was 10.714% 
for training and 0 and 6.250% for testing data sets. The 
difference in error rate between SVM (Linear) and 
LDA was 8.035 and 6.250%. Therefore, it can be 
concluded that SVM (Linear) performs better than 
LDA. Similarly for SVM (RBF, Polynomial and 
Sigmoid) error rate was 0, 1.786 and 13.793% for 
training and 2.083, 2.083 and 9.231% for testing data 
sets indicating that SVM (RBF) performed well in 
classification than other kernels and LDA. Overall, the 
result shows other than sigmiod kernel, SVM 
outperformed well than LDA and it can be concluded 
that performance of SVM in classifying the Indian 
industries is better than LDA. 
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