Contra (π p, μ _y)-Continuity on Generalized Topological Spaces

K. Binoy Balan^{*}, C. Janaki^{**}

*Assistant Professor, Dept. of Mathematics, Sree Narayana Guru College, Coimbatore- 105, Tamil Nadu INDIA.

** Assistant Professor, Dept. of Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4, Tamil NaduINDIA.

Corresponding Addresses:

*<u>binoy_sngc@yahoo.co.in</u>,**janakicsekar@yahoo.com

Research Article

Abstract: In this paper we introduce a new notion called contra $(\pi p, \mu_y)$ – continuous function on generalized topological space. The properties and characterizations of such functions are investigated.

Key words: μ - π ra space, $T_{\pi p}$ space, μ - π ra T_1 , μ - π ra T_2 , μ - π ra connected, μ -Urysohn, μ - π ra locally indiscrete, contra (πp , μ_y) – continuous, contra (πp , μ_y) – closed, μ - π ra closed, μ - π ra open.

Mathematics subject classification: 54A05

1. Introduction

Á.Császár [3]- [13] has introduced the notions of generalized topological space. obtain characterizations for generalized continuous functions and associated interior and closure operators. In [5] he introduced characterizations for generalized continuous functions. Also in [3] he investigated the notions of μ - α -open sets, μ - semi open sets, μ - pre open sets and μ - β open sets in generalized topological space. W.K. Min [15] has introduced and studied the notions of (α, μ_v) – continuous functions, (σ, μ_v) – continuous functions, (π, π) $\mu_{\rm v}$) – continuous functions, and (β , $\mu_{\rm v}$) – continuous in generalized topological spaces. Also D. Jayanthi [14] has introduced some contra continuous functions on generalized topological spaces such as contra (μ_x, μ_y) – continuous functions, contra (α , μ_v) – continuous, contra (σ , μ_v) – continuous functions, and contra (β , μ_v) - continuous functions. In this paper we introduce contra (πp , μ_v) – continuous functions and investigate their characterizations and relationships among these functions.

2. Preliminaries

We recall some basic concepts and results.

Let X be a nonempty set and let exp(X) be the power set of X. $\mu \subseteq exp(X)$ is called a generalized topology [5](briefly, GT) on X, if $\emptyset \in \mu$ and unions of elements of μ belong to μ . The pair (X, μ) is called a generalized topological space (briefly, GTS). The elements of μ are called μ -open [3] subsets of X and the complements are called μ -closed sets. If (X, μ) is a GTS and A \subseteq X, then the interior of (denoted by $i_{\mu}(A)$) is the union of all G \subseteq A, G $\in \mu$ and the closure of A (denoted by $c_{\mu}(A)$) is the intersection of all μ -closed sets containing A.

Note that $c_{\mu}(A) = X - i_{\mu}(X - S)$ and $i_{\mu}(A) = X - c_{\mu}(X - A)$ [5].

Definition 2.1[5] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be

- (i) μ semi open if $A \subseteq c_{\mu}(i_{\mu}(A))$.
- (ii) μ pre open if A \subseteq i_{μ}(c_{μ}(A)).
- (iii) μ - α -open if A $\subseteq i_u(c_u(i_u(A)))$.
- (iv) μ - β -open if A $\subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$.
- (v) μ -r-open [17] if A = $i_{\mu}(c_{\mu}(A))$
- (vi) μ -r α -open [2] if there is a μ -r-open set U such that $U \subset A \subset c_{\alpha}(U)$.

Definition 2.2 [2] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be μ - $\pi r\alpha$ closed set if $c_{\pi}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - $r\alpha$ -open set. The complement of μ - $\pi r\alpha$ closed set is said to be μ - $\pi r\alpha$ open set.

The complement of μ -semi open (μ -pre open, μ - α -open, μ - β -open, μ -r-open, μ -r α -open) set is called μ -semi closed (μ - pre closed, μ - α - closed, μ - β - closed, μ -r-closed) set.

Let us denote the class of all µ-semi open sets, µ-pre open sets, μ - α -open sets, μ - β -open sets, and μ - π r α open sets on X by $\sigma(\mu_x)$ (σ for short), $\pi(\mu_x)$ (π for short), $\alpha(\mu_x)$ (α for short), $\beta(\mu_x)$ (β for short) and $\pi p(\mu_x)$ (πp for short) respectively. Let μ be a generalized topology on a non empty set X and S \subseteq X. The μ - α -closure (resp. μ -semi closure, μ -pre closure, μ - β -closure, μ - π r α closure) of a subset S of X denoted by $c_{\alpha}(S)$ (resp. $c_{\sigma}(S), c_{\pi}(S), c_{\beta}(S), c_{\pi\nu}(S))$ is the intersection of μ - α closed(resp. μ - semi closed, μ - pre closed, μ - β -closed, μ - π ra closed) sets including S. The μ - α -interior (resp. μ-semi interior, μ-pre interior, μ-β-interior, μ- π rαinterior) of a subset S of X denoted by $i_{\alpha}(S)$ (resp. $i_{\sigma}(S)$, $i_{\pi}(S)$, $i_{\beta}(S)$, $i_{\pi p}(S)$) is the union of μ - α -open (resp. μ semi open, μ - pre open, μ - β -open, μ - π r α open) sets contained in S.

Definition 2.3[2] A space (X, μ) is called μ - π r α T_{1/2} space if every μ - π r α closed set is μ - pre closed.

Definition 2.4 [2] Let (X, μ) be a generalized topological space and let $x \in X$, a subset N of X is said to be μ - π r α -nbhd of x iff there exists a μ - π r α - open set G such that $x \in G \subset N$.

Definition 2.5 [2] A function f between the generalized topological spaces (X, μ_x) and (Y, μ_y) is called

- (i) (μ_x, μ_y) $\pi r\alpha$ continuous function if $f^{-1}(A) \in \mu$ - $\pi r\alpha (X, \mu_x)$ for each $A \in (Y, \mu_y)$.
- (ii) (μ_x, μ_y) $\pi r\alpha$ irresolute function if $f^{-1}(A) \in \mu$ - $\pi r\alpha (X, \mu_x)$ for each $A \in \mu$ - $\pi r\alpha (Y, \mu_y)$.

Definition 2.6 [14] Let (X, μ_x) and (Y, μ_y) be GTS's. Then a function f: $X \rightarrow Y$ is said to be

- (i) contra (μ_x, μ_y) continuous if for each μ -open set U in Y, $f^{I}(U)$ is μ closed in X.
- (ii) contra (α, μ_y) continuous if for each μ open set U in Y, f⁻¹(U) is μ α -closed in X.
- (iii) contra (σ, μ_y) continuous if for each μ open set U in Y, f¹(U) is μ - semi closed in X.
- (iv) contra (π, μ_y) continuous if for each μ open set U in Y, f¹(U) is μ - pre closed in X.
- (v) contra (β, μ_y) continuous if for each μ open set U in Y, f⁻¹(U) is μ β -closed in X.

3. Contra $(\pi p, \mu_y)$ – continuous functions

Definition 3.1 Let (X, μ_x) and (Y, μ_y) be GTS's.

Then a function f: $X \rightarrow Y$ is said to be contra $(\pi p, \mu_y)$ – continuous, if for each μ -open set U in Y, $f^1(U)$ is μ - $\pi r \alpha$ closed in X.

Theorem 3.2 (i) Every contra (μ_x, μ_y) – continuous function is contra $(\pi p, \mu_y)$ – continuous.

(ii) Every contra (α , μ_y) – continuous function is contra (πp , μ_y) – continuous.

(iii) Every contra (π, μ_y) – continuous function is contra $(\pi p, \mu_y)$ –continuous.

Proof: Straight forward. Converse of the above statement is not true as shown in the following examples.

Remark: contra $(\pi p, \mu_y)$ – continuous and contra (α, μ_y) – continuous, contra (β, μ_y) – continuous are independent concepts.

Example 3.3 Let $X = \{a, b, c, d\}$. Consider a generalized topology $\mu_x = \{\emptyset, \{a\}, \{a, b, c\}\}$ on X and define f: $(X, \mu_x) \rightarrow (X, \mu_x)$ as follows f(a) = f(b) = d and f(c) = f(d) = a. Then $f^{-1}(\{a\}) = \{c, d\}, f^{-1}(\{a, b, c\}) = \{c, d\}$.

We have f is contra $(\pi p, \mu_x)$ – continuous but not contra (μ_x, μ_x) – continuous and contra (β, μ_x) – continuous.

Example 3.4 Let X=Y= {a, b, c}. Consider two generalized topologies $\mu_x = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$ and $\mu_y = \{\emptyset, \{c\}\}$ on X and Y respectively. Define f: (X, $\mu_x) \rightarrow (Y, \mu_y)$ as follows f(a) = b, f(b) = a and f(c) = c. Then f⁻¹({c}) = {c}. We have f is contra $(\pi p, \mu_y)$ – continuous but not contra (α, μ_y) – continuous.

Example 3.5 Let X =Y= {a, b, c}. Consider two generalized topologies $\mu_x = \{\emptyset, \{b\}, \{b, c\}, \{a, c\}, X\}$ and $\mu_y = \{\emptyset, \{c\}\}$ on X.

Define f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ as follows f(a) = b, f(b) = cand f(c) = c. Then $f^1(\{c\}) = \{b, c\}$. We have f is contra $(\pi p, \mu_y)$ – continuous but not contra (π, μ_y) – continuous, contra (β, μ_y) – continuous and contra (σ, μ_y) – continuous.

Example 3.6 Let $X = \{a, b, c, d\}$. Consider a generalized topology $\mu_x = \{\emptyset, \{a\}, \{a, b, c\}\}$ on X.

Define f: $(X, \mu_x) \rightarrow (X, \mu_x)$ as follows f(a) = d, f (b) = a and f (c) = f (d) = d. Then f¹({a}) = {b}, f¹({a, b, c}) = {b}. We have f is contra (σ , μ_x) – continuous and contra (β , μ_x) – continuous but not a contra (π p, μ_x) – continuous.

Theorem 3.7 Let (X, μ_x) and (Y, μ_y) be GTS's. Then the following are equivalent for a function f: $X \rightarrow Y$.

(i) f is contra (πp , μ_y)-continuous.

(ii) The inverse image of every μ -closed set of Y is μ - $\pi r \alpha$ open in X.

Proof: (i) \Rightarrow (ii) Let U be any μ -closed set of Y. Since Y\U is μ -open then by (i) it follows that $f^{-1}(Y\setminus U) = X\setminus f^{-1}(U)$ is μ - π r α closed in X. This shows that $f^{-1}(U)$ is μ - π r α open in X. (ii) \Rightarrow (i) similarly.

Definition 3.8[16] Let (X, μ) be a GTS. The generalized Kernel of $A \subseteq X$ is denoted by μ - ker (A) and defined as

 $\mu\text{-}\ker(A) = \cap\{G \in \mu; A \subseteq G\}$

Lemma 3.9 [16] Let (X, μ) be a GTS and A $\subseteq X$.

Then μ -ker(A) = { $x \in X$; $c_{\mu}({x}) \cap A \neq \emptyset$ }.

Theorem 3.10 Suppose that μ - π r α O(X) is open under arbitrary union then for a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ the following properties are equivalent.

(i) f is contra $(\pi p, \mu_y)$ - continuous.

- (ii) For every μ closed subset F of Y, f ¹(Y) is μ - π ra open in X.
- (iii) For each $x \in X$ and each μ -closed subset F of Y containing f(x) there exists a μ - π r α open set U of X containing x such that $f(U) \subseteq F$.
- (iv) $f(c_{\pi p}(A)) \subseteq \mu$ -ker(f(A)), for every subset A of X.
- (v) $c_{\pi p}(f^{1}(B)) \subseteq f^{1}(\mu \operatorname{ker}(B))$, for every subset B of Y.

Proof: (i) \Rightarrow (ii) is obvious.

- (iii) \Rightarrow (iii) Let $x \in X$ and F be a μ -closed set in Y containing f(x). By hypothesis, f¹(F) is a μ - π r α open in X.
- (iv) Let U = $f^{1}(F)$ then $f(U)= f(f^{1}(F))\subseteq F$. Thus $f(U)\subseteq F$.

(iii) \Rightarrow (ii) Let F be any μ -closed set of Y and $x \in f^1(F)$. Since $f(x) \in F$, by(iii) there exists a μ - $\pi r \alpha$ open set U_x of X such that $f(U_x) \subseteq F$. $f^1(F) = \{ \cup U_x / x \in f^1(F) \}$. Hence $f^1(F)$ is μ - $\pi r \alpha$ open in X.

(ii) \Rightarrow (iv) Let A be any subset of X .Suppose that $y \notin \mu$ -ker(f(A)),there exist a μ -closed set F containing y such that $f(A) \cap F = \emptyset$. Thus we have $A \cap f^{-1}(F) = \emptyset$.Therefore we obtain $f(c_{\pi p}(A)) \cap F = \emptyset$ and $y \notin f(c_{\pi p}(A))$. This implies that $f(c_{\pi p}(A)) \subseteq \mu$ -ker(f(A)).

 $(iv) \Rightarrow (v)$ Let B be any subset of Y.

By (iv), we have $f(c_{\pi p}(f^{1}(B)) \subseteq \mu$ -ker $(f(f^{1}(B)) \subseteq \mu$ -ker(B) and thus $c_{\pi p}(f^{1}(B)) \subseteq f^{1}(\mu$ -ker(B)).

(v)⇒(i) Let V be any µ-open set of Y. Then by theorem3.10, we have $c_{\pi p}(f^{-1}(V)) ⊂ f^{-1}(µ-ker(V)) = f^{-1}(V)$ and

 $c_{\pi p}(f^{-1}(V)) = f^{-1}(V).$ Hence $f^{-1}(V)$ is a $\mu\text{-}\pi r \alpha$ closed set in X.

Definition 3.11 A generalized topological space (X, μ_x) is called (i) μ - π r α locally indiscrete if every μ - π r α open set is μ -closed.

(ii) $T_{\pi p}$ - space if every μ - $\pi r \alpha$ closed set is μ -pre closed. (iii) μ - $\pi r \alpha$ space if every μ - $\pi r \alpha$ closed set is μ -closed.

Theorem 3.12 Let (X, μ_x) and (Y, μ_y) be two GTS's.

- (i) If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ be a (μ_x, μ_y) - $\pi r \alpha$ continuous and (X, μ_x) is μ - $\pi r \alpha$ locally indiscrete then f is contra $(\pi p, \mu_y)$ continuous.
- (ii) If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is a contra $(\pi p, \mu_y)$ continuous and (X, μ_x) is μ - $\pi r \alpha T_{1/2}$ space then f is contra (π, μ_y) continuous.
- (iii) If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is contra $(\pi p, \mu_y)$ - continuous and (X, μ_x) is μ - π r α space then f is contra (μ_x, μ_y) - continuous.
- (iv) If a function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is contra $(\pi p, \mu_y)$ - continuous and (X, μ_x) is $T_{\pi p}$ - space then f is contra (β, μ_y) continuous.

Proof: (i) Let V be an μ -open set in Y. By assumption $f^{1}(V)$ is μ - π r α open in X. Since X is μ - π r α locally indiscrete, $f^{1}(V)$ is μ closed in X. Hence f is contra (μ_{x}, μ_{y}) – continuous. (ii) Let V be an μ - open set in Y. By assumption f $^{1}(V)$ is μ - π r α closed in X. Since X is μ - π r α - $T_{1/2}$ space then $f^{1}(V)$ is μ -pre closed set in X. Hence f is contra (π, μ_{y}) – continuous.

(iii) Let V be an μ - open set in Y. By assumption f¹(V) is μ - π r α closed set in X. Since X is μ - π r α space then f¹(V) is μ -closed in X. Hence f is contra (μ_x , μ_y)- continuous.

(iv) Let V be an μ - open in Y. By assumption $f^{-1}(V)$ is μ - π ra closed in X. Since X is $T_{\pi p}$ space then f $f^{-1}(V)$ is μ -pre closed in X. But every μ - pre closed set is μ - β closed set. Therefore $f^{-1}(V)$ is μ - β closed set in X. Hence f is contra (β , μ_y)continuous

Theorem 3.13 Let (X, μ_x) and (Y, μ_y) be two GTS's and a function f: $X \rightarrow Y$ then the following are equivalent.

- (i) The function f is (μ_x, μ_y) $\pi r \alpha$ continuous.
- (ii) The inverse of each μ -open set is μ - $\pi r \alpha$ open.
- (iii) For each x in (X, μ_x) , the inverse of every μ -nbhd of f(x) is μ - π r α nbhd of x.
- (iv) For each x in (X, μ_x) and every μ -open set U containing f(x) there exist a μ - $\pi r \alpha$ open set V containing x such that f(V) \subseteq U.
- (v) $f(c_{\pi p}(A)) \subseteq c_{\mu}(f(A))$, for every subset A of X.

(vi) $c_{\pi p}(f^{1}(B)) \subseteq f^{1}(c_{\mu}(B))$, for every subset B of Y.

Proof: (i) \Rightarrow (ii) Straight forward.

(ii) \Rightarrow (iii) Let $x \in X$. Assume that V be a μ -nbhd of f(x), there exists a μ -open set U in Y such that $f(x) \in U \subseteq V$. Consequently $f^{-1}(U)$ is μ - π r α open in X and $x \in f^{-1}(U) \subseteq f^{-1}(V)$. Then $f^{-1}(V)$ is μ - π r α nbhd of x.

(iii) \Rightarrow (iv) Let x \in X and U be a µ-nbhd of f(x). Then by assumption V= f¹(U) is a µ- π r α nbhd of x and f(V)= f(f¹(U))\subseteq U.

(iv)⇒(v) Let A be a subset of X, $f(x)\notin c_{\mu}(f(A))$. Then there exists a μ - open subset V of Y containing f(x) such that V∩f(A)=Ø. Then by (iv) there exists a μ - π r α open set such that $f(x)\in f(U)\subseteq$ V.Hence $f(U)\cap f(A)=Ø$, which implies U∩A=Ø. Consequently $x\notin c_{\pi p}(A)$ and $f(x)\notin f(c_{\pi p}(A))$. Hence $f(c_{\pi p}(A))$.

 $(v) \Rightarrow (vi)$ Let A be a subset of Y.

By (v) we obtain $f(c_{\pi p}(f^{1}(A)) \subseteq c_{\mu}(f(f^{1}(A)))$. Thus $f(c_{\pi p}(f^{1}(A)) \subseteq c_{\mu}(A)$.

This implies $(c_{\pi p}(f^{1}(A)) \subseteq f^{1}(c_{u}(A))$.

 $(vi) \Rightarrow (i)$ Let F be a μ -closed subset of Y. Since $c_{\mu}(F) = F$ and by $(vi) f(c_{\pi p}(f^{-1}(F)) \subseteq c_{\mu}(f(f^{-1}(F))) \subseteq c_{\mu}(F) = F.$

This implies $c_{\pi p}(f^{1}(F)) \subseteq f^{-1}(F)$ and so $f^{-1}(F)$ is μ - $\pi r \alpha$ closed.

Theorem 3.14 A function f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ is $(\mu_x, \mu_y) - \pi r \alpha$ continuous if and only if $f^1(U)$ is μ - $\pi r \alpha$ open in X, for every μ - open set U in Y.

Theorem 3.15 Let (X, μ_x) and (Y, μ_y) be two GTS's.

If a function f: $X \rightarrow Y$ is contra $(\pi p, \mu_y)$ –continuous and Y is μ -regular then f is $(\mu_x, \mu_y) - \pi r \alpha$ continuous.

Proof: Let x be an arbitrary point of X and V be an μ - open set of Y containing f(x).Since Y is μ -regular there exist an μ -open set W in Y containing f(x) such that $c_{\mu}(W) \subseteq V$. Since f is contra $(\pi p, \mu_y) -$ continuous, by theorem 3.10 (iii) there exist a μ - π ra open set U of X containing x such that f(U) $\subseteq c_{\mu}(W)$. Then f(U) $\subseteq c_{\mu}(W) \subseteq V$.Hence f is $(\mu_x, \mu_y) - \pi$ ra continuous. Hence f is $(\mu_x, \mu_y) - \pi$ ra continuous.

Definition 3.16 Let f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ be a function on GTS's. Then the function f is said to be

- (i) μ - π r α open, if the image of each μ - π r α open set in X is a μ - π r α open set in Y.
- (ii) μ - π ra closed, if the image of each μ - π ra closed in X is μ - π ra closed in Y.

Definition 3.17[1] A GTS (X, μ_x) is said to be μ_x connected if X is not the union of two disjoint non empty μ -open subsets of X. **Definition 3.18** A GTS (X, μ_x) is said to be μ_x - $\pi r\alpha$ connected if X is not the union of two disjoint non empty μ - $\pi r\alpha$ open subsets of X.

Theorem 3.19 Let f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ be a (μ_x, μ_y) - $\pi r\alpha$ continuous surjection and if (X, μ_x) is μ_x - $\pi r\alpha$ connected then (Y, μ_y) is μ_y - connected.

Proof: Let f be a (μ_x, μ_y) - $\pi r\alpha$ continuous function of a μ_x - $\pi r\alpha$ connected space X onto Y. If possible let Y be μ_y - disconnected. Let A and B form a disconnected of Y. Then A and B are μ - open and Y= AUB and AOB = \emptyset .

Since f is (μ_x, μ_y) - πra continuous surjection function, $X = f^1(Y) = f^1(A \cup B) = f^1(A) \cup f^1(B)$, where $f^1(A)$ and $f^1(B)$ are non empty μ - πra open sets in X. Also f

 $^{1}(A)\cap f^{-1}(B) = \emptyset$. Hence X is not μ - π r α connected. This is a contradiction. Therefore Y is μ_{y} -connected.

Definition 3.20 A GTS (X, μ_x) is said to be

- (i) μ-πrα T₁ if for each pair of distinct points x and y in X, there exist two disjoint μ-πrα open sets U and V in X such that x∈U, y∉U and y∈V, x∉V.
- (ii) μ - π ra T₂ if for each pair of distinct points x and y in X, there exist disjoint μ - π ra open sets U and V containing x and y respectively.

Definition 3.21 A GTS (X, μ) is said to be μ -Urysohn space if for each pair of distinct points x and y in X, there exists μ - open sets U and V such that x \in U and y \in V and $c_{\mu}(U) \cap c_{\mu}(V) = \emptyset$.

Theorem 3.22 Let (X, μ_x) and (Y, μ_y) be GTS's. If the following three assumptions are satisfied

(i) for each pair of distinct points x and y in X there exists a function f of X into Y such that $f(x) \neq f(y)$.

(ii) (Y, μ_y) is a μ_y -Urysohn space.

(iii) f is a contra $(\pi p, \mu_y)$ continuous at x and y.

Then (X, μ_x) is μ - $\pi r \alpha T_2$.

Proof: Let x and y be any distinct points in X. By assumption (i) there exists a function f: $X \rightarrow Y$ such that $f(x) \neq f(y)$. Let a = f(x) and b = f(y). Since Y is a μ_y - Urysohn space then there exists μ -open sets V and W containing a and b respectively such that $c_{\mu}(V) \cap c_{\mu}(W) = \emptyset$.

Since f is contra $(\pi p, \mu_y)$ –continuous at x and y then there exists μ - $\pi r \alpha$ open sets A and B containing x and y respectively, such that f(A) $\subseteq c_{\mu}(V)$ and f(B) $\subseteq c_{\mu}(W)$. Then f(A) \cap f(B) = Ø. So A \cap B =Ø. Hence X is μ - $\pi r \alpha$ T₂.

For a map f: $(X, \mu_x) \rightarrow (Y, \mu_y)$, the subset $\{(x, f(x)); x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G_{\mu}(f)$.

Theorem 3.23 Let (X, μ_x) and (Y, μ_y) be GTS's. Let f: $X \rightarrow Y$ be a map and g: $X \rightarrow X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for every $x \in X$.

If g is contra (π p, μ_y)- continuous then f is contra (π p, μ_y)- continuous.

Proof: Let U be an μ - open set in Y. Then X×U is an μ - open set in X×Y. Since g is contra (π p, μ _y) –continuous then f⁻¹(U) = g⁻¹(X×U) is μ - π r α closed in X. Hence f is contra (π p, μ _y) – continuous.

Definition 3.24 The graph $G_{\mu}(f)$ of a map

f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ between GTS's is said to be contra $(\pi p, \mu_y)$ -closed if for each $(x, y) \in (X \times Y)$ $\backslash G_{\mu}(f)$, there exist an μ - $\pi r \alpha$ open set U in X containing x and a μ - closed set V in Y containing y such that $(U \times V) \cap G_{\mu}(f) = \emptyset$.

Lemma 3.25 Let $G_{\mu}(f)$ be the graph of a map

f: $(X, \mu_x) \rightarrow (Y, \mu_y)$ between GTS's. For any subset $A \subseteq X$ and $B \subseteq Y$, $f(A) \cap B = \emptyset$ if and only if $(A \times B) \cap G_{\mu}(f) = \emptyset$

Proposition 3.26 The following properties are equivalent for the graph $G_{\mu}(f)$ of a map f in GTS's. (i) $G_{\mu}(f)$ is contra $(\pi p, \mu_v)$ – closed.

(ii) For each $(x, y) \in (X \times Y) \setminus G_{\mu}(f)$, there exist an μ - $\pi r \alpha$ open set U in X containing x and a μ -closed V in Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 3.27 Let (X, μ_x) and (Y, μ_y) be two GTS's. If f: $X \rightarrow Y$ is contra $(\pi p, \mu_y)$ – continuous and Y is

 μ_y - Urysohn space, then $G_{\mu}(f)$ is contra $(\pi p, \mu_y)$ – closed in X×Y.

Proof: Let $(x, y) \in (X \times Y) \setminus G_{\mu}(f)$. It follows that $f(x) \neq y$ and since Y is μ_{y} - Urysohn space then if for each distinct points x and y in X there exists μ -open sets B and C such that $f(x)\in B$ and $y\in C$ and $c_{\mu}(B)\cap c_{\mu}(C) = \emptyset$. Since f is contra $(\pi p, \mu_{y}) -$ continuous then there exists an μ - $\pi r\alpha$ closed set A in X containing x such that $f(A) \subset c_{\mu}(B)$. Therefore $f(A)\cap c_{\mu}(C) = \emptyset$ and $G_{\mu}(f)$ is contra $(\pi p, \mu_{y}) -$ closed in $X \times Y$.

Theorem 3.28 Let (X, μ_x) and (Y, μ_y) be two GTS's. Let f: $X \rightarrow Y$ have a contra $(\pi p, \mu_y)$ – closed graph. If f is injective then X is μ - $\pi r \alpha T_1$.

Proof: Let x_1 and x_2 be any two distinct points of X. We have $(x_1, f(x_2)) \in (X \times Y) \setminus G_{\mu}(f)$ and there exist an μ - $\pi r \alpha$ open set U in X containing x_1 and a μ closed set V in Y containing x_2 such that $f(U) \cap F = \emptyset$.

Hence $U \cap f^{1}(F) = \emptyset$. Therefore we have $x_2 \notin U$. This implies that X is μ - $\pi r \alpha T_1$.

Theorem 3.29 Let (X, μ_x) , (Y, μ_y) and (Z, μ_z) be GTS's. Let f: $X \rightarrow Y$ be surjective, $(\mu_x, \mu_y) -\pi r\alpha$ irresolute and μ - $\pi r\alpha$ closed and g: $Y \rightarrow Z$ be any function. Then g of is contra $(\pi p, \mu_y)$ – continuous if and only if g is contra $(\pi p, \mu_y)$ – continuous.

Proof: Suppose $g \circ f$ is contra $(\pi p, \mu_y)$ – continuous. Let F be any μ -open set in Z. Then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is μ - $\pi r\alpha$ closed in X. Since f is μ - $\pi r\alpha$ closed and surjective, $f(f^{-1}(g^{-1}(F)) = g^{-1}(F)$ is μ - $\pi r\alpha$ in Y and we obtain that g is contra $(\pi p, \mu_y)$ – continuous.

Conversely, suppose g is contra $(\pi p, \mu_y)$ – continuous. Let V be μ -open in Z. Then $g^{-1}(V)$ is μ - $\pi r \alpha$ closed in Y. Since f is (μ_x, μ_y) – irresolute, f ${}^{1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is μ - $\pi r \alpha$ closed in X and so $g \circ f$ is contra $(\pi p, \mu_y)$ – continuous.

References

- 1. A. Al- Omari and T. Noiri, A Unified theory of Contra (μ, λ) continuous functions in generalized topological space, Acta Math. Hungar., 135(1-2)(2012)31-41.
- K. Binoy Balan and C. Janaki, μ-πτα closed sets in generalized topological space, Int.Journal of Adv.sci.and Tech. research,2(6),(2012), 352-359.
- Á. Császár, Generalized open sets, Acta Math.Hungar., 75 (1997), 65-87.
- Á. Császár, γ- compact spaces, Acta Math. Hungar., 87(2000), 99-107.
- Á. Császár, Generalized topology, generalized continuity, Acta Math.Hungar.,96(2002), 351-357.
- 6. Á. Császár, γ- connected sets, Acta Math Hungar,101(2003),273-279.
- 7. Á. Császár, Seperation axioms for generalized topologies, Acta Math.Hungar.,104(2004), 63-69.
- Á. Császár, Generalized open sets in generalized topologies, Acta Math.Hungar., 106(2005),53-66.
- Á. Császár, Further remarks on the formula for γinterior, Acta Math. Hungar.,113(2006),325-332.
- 10. Á. Császár, Remarks on quasi topologies, ActaMath.Hungar.,119(2008),197-200.
- Á. Császár, δ and θ- modification of generalized topologies, Acta Math. Hungar.,120(2008), 275-279.
- 12. Á. Császár, Enlargements and generalized topologies, Acta Math.Hungar.,120(2008),351-354.
- Á. Császár, Products of generalized topologies, Acta Math. Hungar.,123(2009),127-132.
- D. Jayanthi, Contra continuity on generalized topological spaces, Acta Math. Hungar., 137(4)(2012),263-271.
- W. K.Min, Generalized continuous function defined by generalized open sets on generalized topological spaces, Acta Math.Hungar.,128(2010),299-306.
- 16. B. Roy, On generalized R_0 and R_1 spaces, Acta Math.Hungar., 127(2010),291-300.
- R. Shen, Remarks on products of generalized topologies, Acta Math. Hungar.,124(4)(2009),363-369.