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Abstract: A consistent estimator and a Bayes estimator of traffic 

intensity in an  queueing model based 

on the number of customers present at several sampled time points 

are obtained. Further, consistent asymptotically normal (CAN) 

estimator and asymptotic confidence limits for the average number 

of customers in the system are obtained. 

Keywords: Bayes estimator, CAN estimator, maximum likelihood 

estimator, queue, multivariate central limit theorem, 

Slutsky theorem. 
 

1. Introduction 
Most of the studies on queueing models are 

confined to only obtaining expressions for transient or 

stationary (steady state) solutions and do not consider the 

associated statistical inference problems. Parametric 

estimation, interval estimation and Bayes estimation are 

some of the essential tools to understand any random 

phenomena using stochastic models. Analysis of 

queueing systems in all these directions has not received 

much attention in the past. Whenever the systems are 

fully observable in terms of their basic random 

components such as interarrival times and service times, 

standard parametric techniques of statistical theory are 

quite appropriate. An important aspect of queueing theory 

is to estimate queueing parameters for which both 

classical and Bayesian approaches are useful. Table 1 

indicates the present state of work of queueing systems, 

wherein both classical and Bayesian approaches are used 

for the estimation of queueing parameters. 
 

Table 1: Present state of work queueing systems 

Sr. 

No. 

System 

Description 
Authors Estimators 

1 M/M/1 Clarke (1957) 
MLEs of λ and 

µ  

2 M/M/1 
Muddapar 

(1972) 

Bayes 

estimators of λ 

and µ  

3 
M/M/1/∞ and 

M/M/1/N 

Yadavalli et al 

(2004) 
MLE of WQ 

4 
M/M/c/∞ and 

M/M/c/N 

Yadavalli et al 

(2006) 
MLE of WQ 

5 
Tandem queue 

with blocking and 

Chandrasekhar 

et al (2006) 

Moment 

estimators of 

dependent 

structure for 

service times 

Ls and Ws 

6 

Estimation of the 

Parameters of a 

two-phase 

Tandom queue 

with a second 

optional service 

Ghorbani-

Mandolakani 

et al (2013) 

MLEs of the 

parameters 

 

Thiruvaiyaru and Basawa(1992) adopted an 

empirical Bayesian approach to estimate the parameters 

of various queueing systems, where they used arrival and 

service times as the observed data. In all these models 

considered so far, it may be noted that MLE and Bayes 

estimators of queueing parameters are obtained by 

observing mainly number of arrivals and the number of 

service completions, waiting time or sojourn time in the 

continuous setup. But in a real life situation, it is easy to 

observe the number of customers at different time points. 

Mukherjee and Chowdhury (2005) have obtained MLE 

and Bayes estimator of traffic intensity in M/M/1 

queueing model based on the number of customers 

present at several sampled time points. Recently, Paul R. 

Savariappan et al (2012) have obtained MLE and Bayes 

estimator of the parameter p based on the number of 

observations present at several sampled time points 

assuming that the stationary distribution in an M/M/1 

balking situation is Negative Binomial. A two-phase 

tandem queueing model with a second optional service is 

dealt with in Mehrzad Ghorbani-Mandalakani et al (2013) 

and they have estimated the parameters of the model, 

traffic intensity and mean system size, in the steady state, 

via maximum likelihood and Bayesian methods. An 

attempt is made in this paper to obtain a consistent 

estimator of traffic intensity  in the steady state of 

M/M/∞ queue with unlimited service (i.e., an infinite 

number of servers available) based on the number of 

customers present at several sampled time points. Further, 

Bayes estimator of  under the same set up and minimum 

Bayes risk are obtained. Also MLE of the expected 

number of customers in the system, CAN estimator and 
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asymptotic confidence limits for the average number of 

customers in the system are obtained. 
 

2. Consistency of ρρρρ 
The density functions for interarrival times and service 

times are given by 

 

      (2.1) 

where   and   are the mean interarrival time and mean 

service time respectively. We assume that interarrival and 

service times are independently distributed. It can be 

shown that the steady state probability distribution of the 

number of customers r present in an M/M/∞ queueing 

system is Poisson and is given by 

 

         (2.2) 

where   

Let (x1,x2,…,xn) denote the number of customers present 

at different sampled time points (t1,t2,…,tn). The 

likelihood function of the number of customers 

(x1,x2,…,xn) at (t1,t2,…,tn) is given by 
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Now,   

implies that 

    (say). 

It readily follows that, E(Y)= nρ and Var(Y)= nρ, where 
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Since  is a one-to-one function of Y, it is clear that 

y=0,1,2,3… with the probability mass function given by 

 

 

  (say).                               (2.4) 

Further,  

and   

, which shows that 

  is a consistent estimator of ρ.  

By letting, T  , it can be shown that 

 

In other words, .          (2.5)    

In the next section, Bayes estimator of ρ and its Bayes 

risk are obtained by using the same data of Section 2, 

namely the number of customers present at several 

sampled time points. 
 

3. Bayes estimator of ρ 
A two parameter Gamma distribution is taken as the 

natural conjugate prior density for ρ. Assume that, ρ has a 

prior distribution Gamma with the parameters α1 and α2 

namely 
 

 

                       (3.1) 

Note that,  are assigned known constants. 

The marginal pdf of Y, which is called the predictive pdf 

is given by 

 

 
Hence, the posterior distribution of ρ is given by 

     
                         

 

             (3.2)  

Remark 3.1   The posterior distribution of  is also the 

Gamma distribution with the parameters 

 

Remark 3.2 The posterior pdf of  reflects both prior 

information  

  and the sample information   

Thus, the Bayes estimator of ρ under the 

squared error loss is given by 

 

          (3.3) 
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It may be noted that 

   

 
which is the weighted average of the maximum likelihood 

estimator  and the mean  of the prior pdf of the 

parameter , where the respective weights are  and 

. Further, the minimum posterior risk associated 

with this Bayes estimator is given 

by  

                           

   (3.4) 

Now, the minimum Bayes risk of  is given by 

 with respect to the marginal 

distribution h(x1,x2,…,xn) of (X1,X2,…,Xn). 

Hence,  

 

 

Now, the minimum Bayes risk  of  is given by 

 

 

 

4. Statistical inference for an  queue  
In this section, the maximum likelihood 

estimator for the expected number of customers in the 

system, CAN estimator and a 100(1-α)% confidence 

interval for the expected number of customers in the 

system are obtained. A numerical example is also given. 
 

4.1 Maximum likelihood estimator for the expected 

number of customers in the  system 

From the Poisson distribution, the expected number of 

customer in the system given by 

 
Let X1,X2,…,Xn and Y1,Y2,…,Yn be two random samples 

each of size n drawn from an exponential interarrival time 

population and exponential service time population with 

the parameters λ and µ respectively. It is clear that, 

  and , where  are the 

sample means of interarrival times and service times, 

respectively. 

Let   and  respectively. Clearly the 

expected number of customers in the system given in 

(4.1) reduces to  

and hence the MLE of LS (using the invariance property 

of maximum likelihood estimators) is given by 

          (4.2) 

It may be noted that S given in (4.2) is real valued 

function in  and , which is also differentiable. 

Consider the following application of multivariate central 

limit theorem, see Radhakrishna Rao (1974). 
 

4.2 Application of multivariate central limit theorem 

Suppose  are independent and identically 

distributed k- dimensional random variables such that                      

), n = 1,2,3,… having the 

first and second order moments E(Tn) = µ and var(Tn) = 

∑. Define the sequence of random variables 

 

where . 

Further,  
 

4.3 CAN Estimator 

By applying the multivariate central limit theorem given 

in Section 4.2, it can be readily seen that  

 where the 

dispersion matrix ∑ is given by 

∑=diag( ). Again from Radhakrishna Rao (1974), 

we have , 

where        (4.3) 
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Thus  is a CAN estimator of LS. There are several 

methods for generating CAN estimators and the method 

of moments and the method of maximum likelihood are 

commonly used to generate such estimators, see Sinha 

(1986). 
 

4.4 Confidence Interval for the Expected Number of 

Customers in the System 

Let  be the estimator of  obtained by 

replacing  by the consistent estimator namely  

. Let  Since is a continuous 

function of is consistent estimator of   That 

is, .  

By Slutsky theorem 

,  we have 

 

That is,  where  is 

obtained from normal tables. Hence, 100(1-α)% 

asymptotic confidence interval for LS is given by 

                                               (4.4)  

In the following section 4.5, we provide a numerical 

illustration to study the performance of . 
 

4.5 Numerical illustration 

The CAN estimator of Ls is obtained and its 

performance is studied. Here 5000 random samples are 

generated independently 50 times from the exponential 

distributions assuming λ=2 and µ=3. The CAN estimator 

of Ls namely  is obtained using these estimates. Table 2 

shows the calculated values of Ls , , ii
σσσσ̂

, 95 % lower 

and upper confidence limits and the differences between 

Ls and , which is the bias of the estimate . The Mean 

Square Error is obtained by using the formula 

 to find the performance of CAN 

estimator of Ls. The Mean Square Error is 0.000179995 

and it is found to be very close to zero. Hence we 

conclude that the proposed estimator performs reasonably 

well. 
 

 

 

 

Table 2: Values of   and 95 % confidence limits of  

Sl. No 
S

L̂
 

Lower 

limit 

Upper 

limit 

1 0.6683 0.4207 0.9159 

2 0.6459 0.4146 0.8771 

3 0.6598 0.4185 0.9012 

4 0.6760 0.4227 0.9293 

5 0.6558 0.4174 0.8943 

6 0.6524 0.4165 0.8884 

7 0.6639 0.4196 0.9083 

8 0.6411 0.4133 0.8690 

9 0.6723 0.4217 0.9228 

10 0.6611 0.4188 0.9034 

11 0.6554 0.4173 0.8935 

12 0.6696 0.4210 0.9181 

13 0.6742 0.4222 0.9262 

14 0.6758 0.4226 0.9291 

15 0.6568 0.4177 0.8960 

16 0.6557 0.4173 0.8940 

17 0.6684 0.4207 0.9160 

18 0.6898 0.4260 0.9535 

19 0.6888 0.4258 0.9519 

20 0.6776 0.4231 0.9322 

21 0.6382 0.4124 0.8640 

22 0.6742 0.4222 0.9262 

23 0.6578 0.4179 0.8978 

24 0.6548 0.4171 0.8924 

25 0.6759 0.4226 0.9291 

26 0.6732 0.4220 0.9245 

27 0.6612 0.4188 0.9036 

28 0.6568 0.4176 0.8959 

29 0.6483 0.4153 0.8813 

30 0.6767 0.4228 0.9305 

31 0.6416 0.4134 0.8699 

32 0.6795 0.4235 0.9355 

33 0.6795 0.4235 0.9355 

34 0.6514 0.4162 0.8867 

35 0.6396 0.4128 0.8664 

36 0.6753 0.4225 0.9281 

37 0.6815 0.4240 0.9390 

38 0.6625 0.4192 0.9059 

39 0.6698 0.4211 0.9185 

40 0.6665 0.4202 0.9127 

41 0.6674 0.4205 0.9143 

42 0.6631 0.4193 0.9069 

43 0.6505 0.4159 0.8851 

44 0.6956 0.4274 0.9638 

45 0.6722 0.4217 0.9228 

46 0.6551 0.4172 0.8930 

47 0.6721 0.4217 0.9225 

48 0.6712 0.4215 0.9210 

49 0.6770 0.4229 0.9310 

50 0.6838 0.4246 0.9430 

Mean Square Error 0.00018 
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Conclusion 
A consistent estimator and Bayes estimator of 

traffic intensity ρ of the queueing model M/M/∞ based on 

the number of customers present at several sampled time 

points are obtained. Also, CAN estimator and asymptotic 

confidence limits for the expected number of customers 

in the system are obtained. Further, simulation study is 

carried out to obtain the mean square error to assess the 

performance of CAN estimator of Ls and concluded that 

the proposed estimator of the expected number of 

customers in the system  performed reasonably well. 
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