On Harmonious Colouring of Line Graph of Star Graph Families

Rajam K. ${ }^{*}$, Pauline Mary Helen M. ${ }^{\#}$
*M.Phil Scholar, ${ }^{\text {\#Associate Professor, Department of Mathematics, Nirmala College for Women, Red Fields, Coimbaore-641 018, }}$
TamilNadu INDIA.
Corresponding Addresses:
*rajee.mat@gmail.com, "helvic63@yahoo.co.in

Research Article

Abstract

In this paper we discuss the harmonious coloring and harmonious chromatic number of line graph of Central graph, Middle graph and Total graph of star graph denoted by $\mathrm{L}\left[\mathrm{C}\left(\mathrm{K}_{1, n}\right)\right]$, $\mathrm{L}\left[\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]$ and $\mathrm{L}\left[\mathrm{T}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]$ respectively. Keywords: Central graph, Middle graph, Total graph, Line graph, Harmonious coloring, Harmonious chromatic number.

1. Introduction

The first paper on harmonious graph coloring was published in 1982 by Frank Harray and M.J. Plantholt [8].however, the proper definition of this notion is due to J. E. Hopcroft and M.S. Krishnamoorthy [9] in 1983. K. Thilagavathi and J. V. Vivin [11] published a paper "Harmonious coloring of graphs" in 2006. K. Thilagavathi and J. Vernold Vivin, [16] published a paper "On Harmonious coloring of Line graph of central graph of paths" in 2009.
In this paper we discuss about the harmonious chromatic number of line graphs of $\mathrm{C}\left(\mathrm{K}_{1, \mathrm{n}}\right), \mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)$ and $\mathrm{T}\left(\mathrm{K}_{1, \mathrm{n}}\right)$.

2. Preliminaries

All graphs considered here are undirected. For a given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ we do a operation on G , by subdividing each edge exactly once and joining all the non adjacent vertices of G,the graph obtained by this process is called

Central graph [$1,13,14,15$] of G denoted by $C(G)$. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$.The Middle graph [10] of G, denoted by $\mathrm{M}(\mathrm{G})$ is defined as follows. The vertex set $\mathrm{M}(\mathrm{G})$ is $\mathrm{V}(\mathrm{G}) \cup E(\mathrm{G})$. Two vertices x, y in the vertex set $M(G)$ are adjacent in $M(G)$ in case one of the following holds: (i) x, y are in $E(G)$ and x, y are adjacent in G.(ii) x is in $V(G)$, y is in $E(G)$, and x, y are incident in G. Let G be a graph with vertex set $V(G)$ and edge set $\mathrm{E}(\mathrm{G})$.The total graph $[7,10]$ of G,denoted by $T(G)$ is defined as follows. The vertex set $T(G)$ is $V(G) \cup E(G)$. Two vertices x, y in the vertex set $T(G)$ are adjacent in $T(G)$ in case one of the following holds: (i) x, y are in $V(G)$ and x is adjacent to y in G (ii) x, y are in $E(G)$ and x, y are adjacent in G.(ii) x is in $V(G)$, y is in $\mathrm{E}(\mathrm{G})$, and x, y are incident in G . The Line graph $[3,7,10,16]$ of G denoted by $L(G)$ is the graph with vertices are the edges of G with two vertices of $L(G)$ adjacent whenever the corresponding edges of G are adjacent. A harmonious coloring [2,4,5,6,8,12,16] of a simple graph G is proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number $\chi_{H}(\mathrm{G})$ is the least number of colors in such coloring.

3. Harmonious chromatic number of $\mathbf{L}\left[\mathbf{C}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]$

Theorem 3.1. For any star graph $K_{1, n}, \chi_{H}\left(C\left(K_{1, n}\right)\right)=2 n+1$.

Fig 3(a)

Fig 3(b)

Proof. Let. $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . v_{n}\right\}$. By the definition of central graph, each edge $\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex u_{i} in $C\left(K_{1, n}\right)$ and then we have $\left.V \mid C\left(K_{1, n}\right)\right]=\left\{v_{0}\right\} \cup\left\{u_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i} / 1 \leq i \leq n\right\}$. In $C\left(K_{1, n}\right)$ the
vertices v_{0} and $u_{i} 1 \leq i \leq n$ induce a clique on ($\mathrm{n}+1$) vertices in $C\left(K_{1, n}\right)$. Assign C_{0} and $C_{i}(1 \leq i \leq n)$ to the vertices v_{0} and $u_{i}, 1 \leq i \leq n$. Also assign C_{n+i} to the vertices $\left\{V_{i} / 1 \leq i \leq n\right\}$ since the vertices $\left\{V_{i} / 1 \leq i \leq n\right\}$ induces a clique on n vertices. Then the above said coloring is harmonic with minimum number of colors.

$$
\therefore \chi_{H}\left(C\left(K_{1, n}\right)\right)=n+1+n=2 n+1 \text {. }
$$

Theorem 3.2. For any star graph $K_{1, n}, \chi_{H}\left\{L\left(C\left(K_{1, n}\right)\right)\right\}=\frac{n^{2}+2 n}{2}$, if n is even

$$
=\frac{n^{2}+2 n+1}{2} \text {, if nis odd } . \forall n \geq 3
$$

Proof. Let. $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . . v_{n}\right\}$. By the definition of central graph, each edge $v_{0} v_{i}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex u_{i} in $C\left(K_{1, n}\right)$. Clearly the number of vertices in $C\left(K_{1, n}\right)=2 \mathrm{n}+1$ and the number of edges in $C\left(K_{1, n}\right)=\frac{n^{2}+3 n}{2}$. The edges joined by $v_{0} u_{i}$ and $u_{i} v_{i}$ are denoted by $e_{0 i}$ and $e_{i j}$ respectively. Then by the definition of line graph all the edges of central graph becomes the vertices of $L\left(C\left(K_{1, n}\right)\right)$.(i.e.) $)\left\{L\left(C\left(K_{1, n}\right)\right)\right\}=\left\{e_{0 i}\right\} \cup\left\{e_{i j}\right\}$ for $1 \leq i \leq n$, $1 \leq j \leq n$. Here $\quad K_{1}=\left\{e_{0 i} / 1 \leq i \leq n\right\}, K_{2}=\left\{e_{i j} / i \neq j .1 \leq i \leq n, 1 \leq j \leq n\right\}, \quad K_{3}=\left\{e_{i j} / i=j .1 \leq i \leq n, 1 \leq j \leq n\right\}$, moreover $V\left\{L\left(C\left(K_{1, n}\right)\right)\right\}=K_{1} \cup K_{2} \cup K_{3}$ where each K_{1}, K_{2} and K_{3} are distinct. The each vertex set of K_{1} and K_{3} forms clique on n vertices. Therefore in any harmonious coloring we need $2 n$ colors to color the vertices of $K_{1} \cup K_{3}$.

Case(i) If n is even.
The vertex set of K_{2} forms a clique on $\binom{n}{2}$ vertices and there exists a vertex v of K_{2}, adjacent with some vertices of K_{3} but not with K_{1}. In any harmonious coloring $\binom{n}{2}-\frac{n}{2}$ colors are needed to color the vertices of K_{2}. $\chi_{H}\left\{L\left(C\left(K_{1, n}\right)\right)\right\}=2 n+\binom{n}{2}-\frac{n}{2}=\frac{n^{2}+2 n}{2}$.
Case(ii) If n is odd.
In this case also the vertex set of K_{2} forms a clique on $\binom{n}{2}$ vertices and there exists a vertex v of K_{2}, adjacent with some vertices of K_{3} but not with K_{1}. In any harmonious coloring $\binom{n}{2}-\frac{n-1}{2}$ colors are needed to color the vertices of $K_{2} . \quad \therefore \chi_{H}\left\{L\left(C\left(K_{1, n}\right)\right)\right\}=2 n+\binom{n}{2}-\frac{n-1}{2}=\frac{n^{2}+2 n+1}{2}$.

4. Harmonious chromatic number of $\mathrm{L}\left[\mathrm{M}\left(\mathrm{K}_{1, \mathrm{n}}\right)\right]$

Theorem 4.1. For any star graph $K_{1, n}, \chi_{H}\left(M\left(K_{1, n}\right)\right)=n+2 \forall n \geq 3$.

Fig 4(a)

Fig 4(b)

Proof. Let $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . . v_{n}\right\}$. By the definition of middle graph, each edge $v_{0} v_{i}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex e_{i} in $M\left(K_{1, n}\right)$. we have $V\left(M\left(K_{1, n}\right)\right)=\left\{V\left(K_{1, n}\right)\right\} \cup\left\{e_{i} / 1 \leq i \leq n\right\}$.In $M\left(K_{1, n}\right)$ the vertices v_{0} and $e_{i} \quad 1 \leq i \leq n$ induce a clique of order ($\left.\mathrm{n}+1\right)$ in $M\left(K_{1, n}\right)$.Assign C_{0} and $C_{i}(1 \leq i \leq n)$ to the vertex set v_{0} $\cup\left\{e_{i} / 1 \leq i \leq n\right\}$ and C_{n+1} to the pendant vertices $v_{i}(1 \leq i \leq n)$ for .Then the above said coloring is a harmonious coloring with minimum number of colors. $\quad \therefore \quad \chi_{H}\left(M\left(K_{1, n}\right)\right)=n+2$.
Theorem 4.2. For any star graph $K_{1, n}, \chi_{H}\left\{L\left(M\left(K_{1, n}\right)\right)\right\}=\frac{n^{2}+3 n}{2}, \forall n \geq 3$.
Proof. Let $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . v_{n}\right\}$. By the definition of middle graph, each edge $v_{0} v_{i}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex $e_{i}, 1 \leq i \leq n$ in $M\left(K_{1, n}\right)$. Clearly the number of vertices in $M\left(K_{1, n}\right)=2 \mathrm{n}+1$ and the edges joined by $v_{0} e_{i}$ and $e_{i} v_{i}$ are denoted by $e_{0 i}$ and $e_{i j}$ respectively. Then by the definition of line graph all the edges of middle graph becomes the vertices of $L\left(M\left(K_{1, n}\right)\right)($ i.e. $) V\left\{L\left(M\left(K_{1, n}\right)\right)\right\}=\left\{e_{0 i}\right\} \cup\left\{e_{i j}\right\}$ for $1 \leq i \leq n, 1 \leq j \leq n$. Here $K_{1}=\left\{e_{0 i} / 1 \leq i \leq n\right\} \quad K_{2}=\left\{e_{i j} / i \neq j .1 \leq i \leq n, 1 \leq j \leq n\right\}, K_{3}=\left\{e_{i j} / i=j .1 \leq i \leq n, 1 \leq j \leq n\right\}$, moreover $V\left\{L\left(M\left(K_{1, n}\right)\right)\right\}=K_{1} \cup K_{2} \cup K_{3}$ where each K_{1}, K_{2} and K_{3} are distinct. The each vertex set of K_{1} and K_{3} forms clique on n vertices. Therefore in harmonious coloring we need 2 n colors to color the vertices of $K_{1} \cup K_{3}$ And K_{2} forms a clique on $\binom{n}{2}$ vertices.

$$
\therefore \chi_{H}\left\{L\left(M\left(K_{1, n}\right)\right)\right\}=\binom{n}{2}+2 \mathrm{n}=\frac{n^{2}+3 n}{2} .
$$

5. Harmonious chromatic number of $L\left[T\left(K_{1, n}\right)\right]$

Theorem 5.1. For any star graph $K_{1, n}, \chi_{H}\left(T\left(K_{1, n}\right)\right)=2 n+1, \forall n \geq 3$.

Fig 5(a)

Fig 5(b)

Proof. Let $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . . v_{n}\right\}$. By the definition of total graph, each edge $v_{0} v_{i}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex e_{i} in $T\left(K_{1, n}\right)$. we have $V\left(T\left(K_{1, n}\right)\right)=\left\{v_{0}\right\} \cup\left\{e_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i} / 1 \leq i \leq n\right\}$.In $T\left(K_{1, n}\right)$ the vertices v_{0} and $e_{i}, 1 \leq i \leq n$ induce a clique on $(\mathrm{n}+1)$ vertices in $T\left(K_{1, n}\right)$. Assign C_{0} and $C_{i}, 1 \leq i \leq n$ to the vertex set $v_{0} \cup\left\{e_{i} / 1 \leq i \leq n\right\}$.Also assign C_{n+i} to the vertices $\left\{v_{i} / 1 \leq i \leq n\right\}$ since the vertices $\left\{v_{i} / 1 \leq i \leq n\right\}$ induces a clique on n vertices. Then the above said coloring is harmonic with minimum number of colors.

$$
\therefore \chi_{H}\left(T\left(K_{1, n}\right)\right)=n+1+n=2 n+1 .
$$

Theorem 5.2. For any star graph $K_{1, n}, \chi_{H}\left\{L\left(T\left(K_{1, n}\right)\right)\right\}=\frac{n^{2}+5 n}{2}, \forall n \geq 3$.
Proof. Let $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, \ldots \ldots . v_{n}\right\}$. By the definition of total graph, each edge $v_{0} v_{i}$ for $1 \leq i \leq n$ of $K_{1, n}$ is subdivided by the vertex e_{i}^{\prime} in $T\left(K_{1, n}\right)$. we have $V\left(T\left(K_{1, n}\right)\right)=\left\{v_{0}\right\} \cup\left\{e_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} / 1 \leq i \leq n\right\}$ clearly the number of vertices in $T\left(K_{1, n}\right)=2 \mathrm{n}+1$ and the edges joined by $v_{0} e_{i}, v_{0} e_{i}^{\prime}$, and $e_{i}^{\prime} v_{i}$ are denoted by $e_{0 i}, e_{0 i}^{\prime}$ and $e_{i j}$ respectively. Then by the definition of line graph all the edges of total graph becomes the vertices of $L\left(T\left(K_{i, n}\right)\right)$. (i.e.) $V\left\{L\left(T\left(K_{1, n}\right)\right)\right\}=\left\{e_{0 i}\right\} \cup\left\{e_{0 i}^{\prime}\right\} \cup\left\{e_{i j}\right\}$ for $1 \leq i \leq n, 1 \leq j \leq n$. . Here $K_{1}=\left\{e_{0 i}^{\prime} / 1 \leq i \leq n\right\}$ $K_{2}=\left\{\left\{e_{0 i}\right\} \cup\left\{e_{i j}\right\}, i \neq j / 1 \leq i \leq n, 1 \leq j \leq n\right\}, K_{3}=\left\{e_{i j} / i=j .1 \leq i \leq n, 1 \leq j \leq n\right\}$, moreover $V\left\{L\left(T\left(K_{1, n}\right)\right)\right\}=$ $K_{1} \cup K_{2} \cup K_{3}$ where each K_{1}, K_{2} and K_{3} are distinct. The each vertex set of K_{1} and K_{3} forms clique on n vertices. Therefore in harmonious coloring we need 2 n colors to color the vertices of $K_{1} \cup K_{3}$. Also K_{2} forms a clique
on $\frac{n(n+1)}{2}$ vertices. .

References

1. Akbar Ali M. M. and Vernold Vivin J., Harmonious Chromatic Number of Central graph of complete graph Families, Journal of Combinatorics, information and System Sciences.Vol. 32 (2007) No.1-4(combined) 221231.
2. D. G. Beane, N. L. Biggs and B. J. Wilson, the growth rate of harmonious chromatic number, journal of Graph Theory, Vol. 13 (1989) 291-299
3. J. A. Bondy and U. S. R. Murty, Graph Theory with Application. London: MacMillan (1976).
4. K. J. Edwards, The harmonious chromatic number of almost all trees, Combinatorics, Probability and Computing, 4 (1995), 61-69.
5. K. J. Edwards, The harmonious chromatic number of bounded degree graphs, Journal of the London Mathematical Society (Series 2),55(1997),.435-447.
6. K.J Edwards, The harmonious chromatic number of complete r-ary trees, Discrete Mathematics, 2003(1999), 83-99.
7. Frank Harray, Graph Theory, Narosa Publishing home. (1969).
8. Frank,O.;Harray,F.;Plantholt,M. The line distinguishing chromatic number of a graph.ars combin.14(1982) 241252.
9. J.Hopscroft and M.S. Krishnamoorthy, On the harmonious colouring of Graphs, SIAM J.Algebra Discrete Math 4 (1983) 306-311.
10. D. Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow proceedings, Berlin, New York (1981), 139-150.
$\therefore \chi_{H}\left\{L\left(T\left(K_{1, n}\right)\right)\right\}=2 n+\frac{n(n+1)}{2}=\frac{n^{2}+5 n}{2} .$,
11. K. Thilagavathi, Vernold Vivin.J, Harmonious Colouring of graphs, Far East J.Math. Sci. (FJMS), Volume 20,No.2(2006),55-63.
12. M. venkatachalam, J. Vernold Vivin and Kaliraj, Harmonious Colouring on double star graph families, Tamkang Journal of Mathematics.Vol 43,No 2,153-158.
13. Vernold Vivin J., Akbar Ali M. M, and K. Thilagavathi, On Harmonious colouring of Central Graphs, Advances and Application in Discrete mathematics 2(1),2008,1733.
14. Vernold Vivin J, Akbar Ali M. M and K. Thilagavathi, On Harmonious colouring of Central Graphs of Odd Cycles and complete Graphs, proceedings of the international conference on Mathematics and Computer Science, Loyolo College, Chennai, India.(ICMCS 2007) ,March 1-3,2007,74-78.
15. Vernold Vivin.J, K. Thilagavathi, and Anitha B, On Harmonious Colouring of Line Graph of Central Graphs of Bipartite Graphs, Journal of Combinatorics, Information and System Sciences. Vol $32(2007)$ No1- 4 (combined), 233-240.
16. Vernold Vivin .J, and K. Thilagavathi, On Harmonious Colouring of Line Graph of Central Graph of paths, Applied Mathematical sciences,Vol.3,2009,No.5,205214.
17. V. J. Vernold, Harmonious Colouring of Total Graphs nLeaf, Central Graphs and Circumdetic Graphs, Ph. D Thesis, Bharathiar University (2007), Coimbatore, India.
