# On Harmonious Colouring of Line Graph of Star Graph Families

Rajam K.<sup>\*</sup>, Pauline Mary Helen M.<sup>#</sup>

\*M.Phil Scholar, #Associate Professor, Department of Mathematics, Nirmala College for Women, Red Fields, Coimbaore-641 018,

TamilNadu INDIA.

Corresponding Addresses:

<sup>\*</sup><u>rajee.mat@gmail.com</u>, <sup>#</sup><u>helvic63@yahoo.co.in</u>

### **Research Article**

*Abstract:* In this paper we discuss the harmonious coloring and harmonious chromatic number of line graph of Central graph, Middle graph and Total graph of star graph denoted by  $L[C(K_{1,n})]$ ,  $L[M(K_{1,n})]$  and  $L[T(K_{1,n})]$  respectively.

*Keywords:* Central graph, Middle graph, Total graph, Line graph, Harmonious coloring, Harmonious chromatic number.

### **1. Introduction**

The first paper on harmonious graph coloring was published in 1982 by Frank Harray and M.J. Plantholt [8].however, the proper definition of this notion is due to J. E. Hopcroft and M.S. Krishnamoorthy [9] in 1983. K. Thilagavathi and J. V. Vivin [11] published a paper "Harmonious coloring of graphs" in 2006. K. Thilagavathi and J. Vernold Vivin, [16] published a paper "On Harmonious coloring of Line graph of central graph of paths" in 2009.

In this paper we discuss about the harmonious chromatic number of line graphs of  $C(K_{1,n}), M(K_{1,n})$  and  $T(K_{1,n})$ .

### 2. Preliminaries

All graphs considered here are undirected. For a given graph G=(V,E) we do a operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G,the graph obtained by this process is called

## 3. Harmonious chromatic number of $L[C(K_{1,n})]$

**Theorem 3.1.** For any star graph  $K_{1,n}$ ,  $\chi_H(C(K_{1,n})) = 2n+1$ .





**Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of central graph, each edge  $v_0v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $u_i$  in  $C(K_{1,n})$  and then we have  $V[C(K_{1,n})] = \{v_0\} \cup \{u_i / 1 \le i \le n\} \cup \{v_i / 1 \le i \le n\}$ . In  $C(K_{1,n})$  the

vertices  $v_0$  and  $u_i$   $1 \le i \le n$  induce a clique on (n+1) vertices in  $C(K_{1,n})$ . Assign  $C_0$  and  $C_i$   $(1 \le i \le n)$  to the vertices  $v_0$  and  $u_i$ ,  $1 \le i \le n$ . Also assign  $C_{n+i}$  to the vertices  $\{V_i / 1 \le i \le n\}$  since the vertices  $\{V_i / 1 \le i \le n\}$  induces a clique on n vertices. Then the above said coloring is harmonic with minimum number of colors.  $\therefore \chi_H (C(K_{1,n})) = n + 1 + n = 2n + 1.$ 

**Theorem 3.2.** For any star graph  $K_{1,n}$ ,  $\chi_H \{L(C(K_{1,n}))\} = \frac{n^2 + 2n}{2}$ , if n is even =  $\frac{n^2 + 2n + 1}{2}$ , if n is odd  $\forall n \ge 3$ 

**Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of central graph, each edge  $v_0v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $u_i$  in  $C(K_{1,n})$ . Clearly the number of vertices in  $C(K_{1,n}) = 2n+1$  and the number of edges in  $C(K_{1,n}) = \frac{n^2 + 3n}{2}$ . The edges joined by  $v_0u_i$  and  $u_iv_i$  are denoted by  $e_{0i}$  and  $e_{ij}$  respectively. Then by the definition of line graph all the edges of central graph becomes the vertices of  $L(C(K_{1,n}))$ .(i.e.) $V\{L(C(K_{1,n}))\} = \{e_{0i}\} \cup \{e_{ij}\}$  for  $1 \le i \le n$ ,  $1 \le j \le n$ . Here  $K_1 = \{e_{0i} / 1 \le i \le n\}, K_2 = \{e_{ij} / i \ne j.1 \le i \le n, 1 \le j \le n\}, K_3 = \{e_{ij} / i = j.1 \le i \le n, 1 \le j \le n\},$  moreover  $V\{L(C(K_{1,n}))\} = K_1 \cup K_2 \cup K_3$  where each  $K_1, K_2$  and  $K_3$  are distinct. The each vertex set of  $K_1$  and  $K_3$  forms clique on n vertices. Therefore in any harmonious coloring we need 2n colors to color the vertices of  $K_1 \cup K_3$ .

### Case(i) If n is even.

The vertex set of  $K_2$  forms a clique on  $\binom{n}{2}$  vertices and there exists a vertex v of  $K_2$ , adjacent with some vertices of  $K_3$  but not with  $K_1$ . In any harmonious coloring  $\binom{n}{2} - \frac{n}{2}$  colors are needed to color the vertices of  $K_2$ .

$$\chi_H \{ L(C(K_{1,n})) \} = 2n + \binom{n}{2} - \frac{n}{2} = \frac{n^2 + 2n}{2}.$$
  
Case(ii) If n is odd.

In this case also the vertex set of  $K_2$  forms a clique on  $\binom{n}{2}$  vertices and there exists a vertex v of  $K_2$ , adjacent with some vertices of  $K_3$  but not with  $K_1$ . In any harmonious coloring  $\binom{n}{2} - \frac{n-1}{2}$  colors are needed to color the vertices of

$$K_2 \qquad \qquad \therefore \quad \chi_H \{ L(C(K_{1,n})) \} = 2n + \binom{n}{2} - \frac{n-1}{2} = \frac{n^2 + 2n + 1}{2}.$$

### **4. Harmonious chromatic number of L[M(K<sub>1,n</sub>)] Theorem 4.1.** For any star graph $K_{1,n}$ , $\chi_H(M(K_{1,n})) = n+2 \quad \forall n \ge 3$ ..



Fig 4(a)



Fig 4(b)

**Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of middle graph, each edge  $v_0 v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $e_i$  in  $M(K_{1,n})$ . we have  $V(M(K_{1,n})) = \{V(K_{1,n})\} \cup \{e_i / 1 \le i \le n\}$ . In  $M(K_{1,n})$  the vertices  $v_0$  and  $e_i$   $1 \le i \le n$  induce a clique of order (n+1) in  $M(K_{1,n})$ . Assign  $C_0$  and  $C_i$  ( $1 \le i \le n$ ) to the vertex set  $v_0$   $\cup \{e_i / 1 \le i \le n\}$  and  $C_{n+1}$  to the pendant vertices  $v_i$  ( $1 \le i \le n$ ) for . Then the above said coloring is a harmonious coloring with minimum number of colors.  $\therefore \chi_H(M(K_{1,n})) = n+2$ .

**Theorem 4.2.** For any star graph  $K_{1,n}$ ,  $\chi_H \{ L(M(K_{1,n})) \} = \frac{n^2 + 3n}{2}$ ,  $\forall n \ge 3$ .

**Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of middle graph, each edge  $v_0v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $e_i$ ,  $1 \le i \le n$  in  $M(K_{1,n})$ . Clearly the number of vertices in  $M(K_{1,n}) = 2n+1$  and the edges joined by  $v_0e_i$  and  $e_iv_i$  are denoted by  $e_{0i}$  and  $e_{ij}$  respectively. Then by the definition of line graph all the edges of middle graph becomes the vertices of  $L(M(K_{1,n}))$  (i.e.)  $V\{L(M(K_{1,n}))\} = \{e_{0i}\} \cup \{e_{ij}\}$  for  $1 \le i \le n, 1 \le j \le n$ . Here  $K_1 = \{e_{0i} / 1 \le i \le n\}$   $K_2 = \{e_{ij} / i \ne j, 1 \le i \le n, 1 \le j \le n\}$ ,  $K_3 = \{e_{ij} / i = j, 1 \le i \le n, 1 \le j \le n\}$ , moreover  $V\{L(M(K_{1,n}))\} = K_1 \cup K_2 \cup K_3$  where each  $K_1, K_2$  and  $K_3$  are distinct. The each vertex set of  $K_1$  and  $K_3$  forms clique on n vertices. Therefore in harmonious coloring we need 2n colors to color the vertices of  $K_1 \cup K_3$  And  $K_2$ 

forms a clique on 
$$\binom{n}{2}$$
 vertices.  
 $\therefore \chi_H \{ L(M(K_{1,n})) \} = \binom{n}{2} + 2n = \frac{n^2 + 3n}{2}$ 

### 5. Harmonious chromatic number of L[T(K<sub>1,n</sub>)]

**Theorem 5.1.** For any star graph  $K_{1,n}$ ,  $\chi_H(T(K_{1,n})) = 2n + 1$ ,  $\forall n \ge 3$ .



**Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of total graph, each edge  $v_0 v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $e_i$  in  $T(K_{1,n})$ . we have  $V(T(K_{1,n})) = \{v_0\} \cup \{e_i / 1 \le i \le n\} \cup \{v_i / 1 \le i \le n\}$ . In  $T(K_{1,n})$  the vertices  $v_0$  and  $e_i$ ,  $1 \le i \le n$  induce a clique on (n+1) vertices in  $T(K_{1,n})$ . Assign  $C_0$  and  $C_i$ ,  $1 \le i \le n$  to the vertex set  $v_0 \cup \{e_i / 1 \le i \le n\}$ . Also assign  $C_{n+i}$  to the vertices  $\{v_i / 1 \le i \le n\}$  since the vertices  $\{v_i / 1 \le i \le n\}$  induces a clique on n vertices. Then the above said coloring is harmonic with minimum number of colors.

$$\therefore \chi_H(T(K_{1,n})) = n+1+n = 2n+1.$$

**Theorem 5.2.** For any star graph  $K_{1,n}$ ,  $\chi_H \{ L(T(K_{1,n})) \} = \frac{n^2 + 5n}{2}$ ,  $\forall n \ge 3$ . **Proof.** Let  $V(K_{1,n}) = \{v_0, v_1, \dots, v_n\}$ . By the definition of total graph, each edge  $v_0v_i$  for  $1 \le i \le n$  of  $K_{1,n}$  is subdivided by the vertex  $e_i$  in  $T(K_{1,n})$ . we have  $V(T(K_{1,n})) = \{v_0\} \cup \{e_i^{-1}/1 \le i \le n\} \cup \{v_i^{-1}/1 \le i \le n\}$  clearly the number of vertices in  $T(K_{1,n}) = 2n+1$  and the edges joined by  $v_0e_i, v_0e_i^{-1}$ , and  $e_i^{-1}v_i$  are denoted by  $e_{0i}, e_{0i}^{-1}$  and  $e_{ij}$  respectively. Then by the definition of line graph all the edges of total graph becomes the vertices of  $L(T(K_{i,n}))$ . (i.e.)  $V\{L(T(K_{1,n}))\} = \{e_{0i}\} \cup \{e_{0i}^{-1}\} \cup \{e_{ij}\}$  for  $1 \le i \le n, 1 \le j \le n$ . Here  $K_1 = \{e_{0i}^{-1}/1 \le i \le n\}$  $K_2 = \{\{e_{0i}\} \cup \{e_{0i}\}, i \ne j/1 \le i \le n, 1 \le j \le n\}, K_3 = \{e_{ij}/i = j.1 \le i \le n, 1 \le j \le n\}$ , moreover  $V\{L(T(K_{1,n}))\} = K_1 \cup K_2 \cup K_3$  where each  $K_1, K_2$  and  $K_3$  are distinct. The each vertex set of  $K_1$  and  $K_3$  forms clique on n vertices. Therefore in harmonious coloring we need 2n colors to color the vertices of  $K_1 \cup K_3$ . Also  $K_2$  forms a clique on  $\frac{n(n+1)}{2}$  vertices. .  $\therefore \chi_H \{L(T(K_{1,n}))\} = 2n + \frac{n(n+1)}{2} = \frac{n^2 + 5n}{2}$ .

#### References

- Akbar Ali M. M. and Vernold Vivin J., Harmonious Chromatic Number of Central graph of complete graph Families, Journal of Combinatorics, information and System Sciences.Vol.32 (2007) No.1-4(combined) 221-231.
- D. G. Beane, N. L. Biggs and B. J. Wilson, the growth rate of harmonious chromatic number, journal of Graph Theory, Vol.13 (1989) 291-299
- 3. J. A. Bondy and U. S. R. Murty, Graph Theory with Application. London: MacMillan (1976).
- 4. K. J. Edwards, The harmonious chromatic number of almost all trees, Combinatorics, Probability and Computing, 4 (1995), 61-69.
- 5. K. J. Edwards, The harmonious chromatic number of bounded degree graphs, Journal of the London Mathematical Society (Series 2),55(1997),435-447.
- 6. K.J Edwards, The harmonious chromatic number of complete r-ary trees, Discrete Mathematics, 2003(1999), 83-99.
- 7. Frank Harray, Graph Theory, Narosa Publishing home. (1969).
- 8. Frank,O.;Harray,F.;Plantholt,M. The line distinguishing chromatic number of a graph.ars combin.14(1982) 241-252.
- 9. J.Hopscroft and M.S. Krishnamoorthy, On the harmonious colouring of Graphs, SIAM J.Algebra Discrete Math 4 (1983) 306-311.
- 10. D. Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow proceedings, Berlin, New York (1981), 139-150.

- K. Thilagavathi, Vernold Vivin.J, Harmonious Colouring of graphs, Far East J.Math. Sci. (FJMS), Volume 20.No.2(2006),55-63.
- M. venkatachalam, J. Vernold Vivin and Kaliraj, Harmonious Colouring on double star graph families, Tamkang Journal of Mathematics. Vol 43, No 2, 153-158.
- Vernold Vivin J., Akbar Ali M. M, and K. Thilagavathi, On Harmonious colouring of Central Graphs, Advances and Application in Discrete mathematics 2(1),2008,17-33.
- 14. Vernold Vivin J, Akbar Ali M. M and K. Thilagavathi, On Harmonious colouring of Central Graphs of Odd Cycles and complete Graphs, proceedings of the international conference on Mathematics and Computer Science, Loyolo College, Chennai, India.(ICMCS 2007) ,March 1-3,2007,74-78.
- Vernold Vivin.J, K. Thilagavathi, and Anitha B, On Harmonious Colouring of Line Graph of Central Graphs of Bipartite Graphs, Journal of Combinatorics, Information and System Sciences. Vol 32(2007) No1- 4 (combined), 233-240.
- Vernold Vivin .J, and K. Thilagavathi, On Harmonious Colouring of Line Graph of Central Graph of paths, Applied Mathematical sciences, Vol.3, 2009, No.5, 205-214.
- V. J. Vernold, Harmonious Colouring of Total Graphs n-Leaf, Central Graphs and Circumdetic Graphs, Ph. D Thesis, Bharathiar University (2007), Coimbatore, India.