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Abstract: In this paper we consider a system (plant) of “Hodgkin-

Hoxley classical mathematical model of EEG signals" as an input-

output map � =  �(�). We assume that the internal structure of this 

system is unknown, but qualitative knowledge about the behavior is 

available in the form of “If - Then" rules. We construct a 

mathematical description of the system, based on available 

information, so that it will represents faithfully the true system of 

“Tsukamoto Fuzzy Control Model". The construction process 

consists of translating linguistic rules into mathe-matical expression 

using fuzzy sets and fuzzy logic with the technique of Tsukamoto 

fuzzy inference rules so that desired output (o/p) result is achieved. 

In essence Tsukamoto Fuzzy Controlled Model is constructed by 

fusing multiple local models that associated with fuzzy subspaces 

of the given inputs (I/Ps) space. These I/Ps are nothing but I/Ps of 

the classical EEG signal model. Furthermore the set of fuzzy I/Ps 

subspaces form a fuzzy decomposition of the I/Ps space. Finally the 

result of fusing multiple local models (in terms of Fuzzy “If  - 

Then" rules) by the technique of Tsukamoto Fuzzy Rule Base 

method gives a final output result which is equivalent to the final 

output result of classical EEG signal model. The obtained fuzzy 

controlled system is shown to be within the class of designs capable 

of approximating the true input - output relation to the required 

degree of accuracy. 

Key words: Mathematical model of EEG signals, inputs - output 

linguistic variables, Tsukamoto fuzzy inference rules, weighted 

average formula. 
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1 Introduction 
The conventional PID controller EEG signal model: A 

conventional (classical) proportional-integral-derivative 

(PID) controller of Hodgkin-Huxley mathematical model 

of EEG signal is based on a rigorous mathematical model 

of some linear process. This model uses a set of equations 

that describes the stable equilibrium state of the control 

surface through coefficients originated to the PID aspect 

of the system. Conventional controller reads a sensor 

value, applies mathematical model and produces desired 

output by the mathematical algorithm. It is to be noted 

that the conventional mathematical EEG signal model is 

deceptively complex. It run up against computationally 

complex problems that they simply could not address 

without consuming prohibitive amount of computer 

power - if they address them at all. Hence need of 

Tsukamoto Fuzzy Controlled Model is essential. Since 

fuzzy system is universal approximator and is well suited 

to modeling highly complex system, it is able to 

approximate the behavior of system displaying a variety 

of poorly understood and /or linear nonlinear properties. 

Fuzzy rule based system usually execute faster than 

conventional rule based system and requires fewer rules 

with the ability to explain their reasoning, it provides an 

ideal way of addressing these difficult problems. 

Fuzzy control model: Fuzzy logic controller (FLC) 

serves the same function as the conventional PID 

controller. PID manages a complex control surface by 

reading sensor information, executing a mathematical 

model and making changes to the device actuators. 

However the fuzzy logic controller manages this complex 

control surface through heuristic rather than a 

mathematical model. Further a fuzzy system is able to 

approximate to any level of precision to any continuous 

linear/non-linear function. A fuzzy controller is fuzzy 

system model. It employs fuzzy sets to represent the 

semantic properties of each control rule and solution 

variable and processes its input-output using the set of 

production ‘If-Then’ rules that associates an input value, 

through a collection of fuzzy sets, into a desired output 

representation. 

In the “Tsukamoto fuzzy reasoning method” the 

consequent part of each fuzzy “If-Then” rule is 

represented by a fuzzy set with a monotonic membership 

function as shown in Figure 1. Tsukamoto fuzzy model 

like a classical EEG signal model is based on the I/Ps 

process and output (O/P) flow concepts. This has two 

important benefits over classical EEG signal model: i) 

The model can generally be modified with fewer induced 

error; ii) The model can be located orfixed in a minimum 

amount of time. 

Because of the practical merits, Tsukamoto fuzzy model 

have been recognized over classical EEG signal model. It 

has been applied very effectively (and efficiently) to 

provide O/P result which is as good as the O/P result of 

classical EEG signal model. 
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Figure 1: Tsukamoto fuzzy reasoning method

monotonic consequent part and‘	
 ′ is the minimum matching 

degree between�
(��)�� �
(��
 

2 Classical Mathematical Model of EEG 

Signals 
This EEG signal model is based on the Hodgkin 

Nobel prize winning model for the squid axon published 

in1952���. 

2.1) Mechanism: A nerve axon may be stimulated and 

the activated sodium (��) and potassium (

produced in the vicinity of the cell membrane may lead to 

the electrical excitation of the nerve axon. Prominently, 

the electrical excitation arises: (a) from the effect of 

membrane potential on the movement of ions, and (b) 

from interaction of the potential with the opening and 

closing of voltage activated membrane channels. The 

membrane potential increases when the membrane 

polarized with a net negative charges lining in the inner 

surface and equal but apposite net positive charge on the 

outer surface. This potential (E) may be related to the 

amount of electrical charge (Q), using the relation,

�  =    
�

��
  ,      

where E, electrical potential (or membrane potential or 

electrical force) is measured in the unit of volts; 

electrical charge is measured in terms of coulombs/

and   Cm, is the measure of capacity of membrane in units 

of farad/� ! . 

In practice, in order to model the action potential (APs) 

the amount of charge  "�  on the inner surfaces (and 

on the outer surface) of the cell membrane has to be 

mathematically related to the stimulating current (

flowing into the cell through the stimulating electrodes. 

The Hodgkin-Huxley model is shown in Figure 2

 

Figure 2: Hodgkin-Huxley excitation model.
 

In this Figure 2 membrane current ( memb
I

positive charges flowing out of cell. This current consist 

of three currents namely, sodium (Na), potassium (K) and 

leak currents (the leak current is due to fact that the inner 

and outer Na and K ions are not exactly equal).Hodgkin 
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Huxley excitation model. 

memb ) is the result of 

positive charges flowing out of cell. This current consist 

of three currents namely, sodium (Na), potassium (K) and 

leak currents (the leak current is due to fact that the inner 

and outer Na and K ions are not exactly equal).Hodgkin 

and Huxley estimated the activation and inactivation 

functions for the Na and K currents and derived a 

mathematical model to describe an action potential AP 

similar to that of a giant squid. The model is neuron 

model that usages voltage gated channels. This model 

describes the change in membrane potential (E) with 

respect to time. The overall membrane current is the sum 

of capacity current and ionic current as follows,

%*(*+ � �*
,-

,'
  + %
  

Where Ii, is the ionic current as indicated

consists of the sum of three individual components as 

follows, 
  %
   =   %.)+  %/+   %0()/  

where %.), can be related to the maximal conductance

1̅.);  activation variable  .);  
inactivation variable 4.) and driving force

through 

%.5=1̅.)4.)6� 7 �.58
9� 

 

Similarly %/ and%0()/ can be described.

The change in the variables .) 

0 to 1 (time in ms) according to the following equations:
,

,'
�.)�   �  :'  �;<5 �-��=$)<5� $> <5�-�)

 

where, 	��� and β��� are forward and backward rate 

functions respectively and :'is a temperature dependent 

factor. Similarly, 
,

,'
�4.)�  and 

,

,'
The forward and backward parameters were empirically 

estimated by Hodgkin and Huxley as follows:

     	.)��� �
9.���.=-

=$(?�@.ABC.DE�
 F.)��� � 4H

 

As stated in the simulator for neural network and action 

potential (SNNPA) IJKHLKMLH��

and F��� have been converted from the origi

Hodgkin-Huxley version to a version agreeing with 

physiological practice taking depolarization of the 

membrane as positive. Resting potential has been shifted 

to -60mV (from original 0mV). A simulated action 

potential is illustrated in Figure 3

parameters are set to be,�
100 O � !⁄ ,
1̅/ � 35 O � !⁄ ,1̅0 �
0.35 O � !⁄ ,d�.)=60mV.Using the values of 

etc in the above related equations (1)
RSTSU � 80µV/XSY(see Figure 3 ) 
 

2.2) Brief algorithm of EEG signal modeling:

information transmitted by nerve in the central nerves 

system (CNS) is called an action potential (AP). APs are 

caused by an exchange of ions across the neuron 

membrane and are a temporary change in the membrane 

potential that transmitted along the axon. As soon as the 

stimulus strength goes above the threshold, an action 

8605, Volume 7 Issue 3    2013 

ed the activation and inactivation 

functions for the Na and K currents and derived a 

mathematical model to describe an action potential AP 

similar to that of a giant squid. The model is neuron 

model that usages voltage gated channels. This model 

the change in membrane potential (E) with 

respect to time. The overall membrane current is the sum 

of capacity current and ionic current as follows, 

               (2) 

, is the ionic current as indicated in Figure 3. It 

consists of the sum of three individual components as 

               (3) 

, can be related to the maximal conductance 

and driving force �� 7 �.5� 

                (4) 

can be described. 

 ,/  and 4.) vary from  

0 to 1 (time in ms) according to the following equations: 

� �) <5�                (5) 

are forward and backward rate 

is a temperature dependent 

,'
�/�   can be described. 

The forward and backward parameters were empirically 

estimated by Hodgkin and Huxley as follows: 

H
?�EBZC�
[C  , etc.           (6) 

As stated in the simulator for neural network and action 
��. The parameters 	���  

have been converted from the original 

Huxley version to a version agreeing with 

physiological practice taking depolarization of the 

membrane as positive. Resting potential has been shifted 

60mV (from original 0mV). A simulated action 

Figure 3. For this model, the 

�* �1.1µ\ � !⁄ ,1̅.) �

=60mV.Using the values of �*,1̅/, 10  
etc in the above related equations (1)-(6), one gets 

               (7) 

2.2) Brief algorithm of EEG signal modeling: The 

information transmitted by nerve in the central nerves 

system (CNS) is called an action potential (AP). APs are 

caused by an exchange of ions across the neuron 

brane and are a temporary change in the membrane 

potential that transmitted along the axon. As soon as the 

stimulus strength goes above the threshold, an action 
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potential appears and travels down the nerve. The 

membrane potential depolarizes (becomes more 

producing spike. After the peak of the spike (having 

sodium (+) channels close and the potassium (+) open), 

the membrane potential repolarizes (becomes more 

negative). The potential becomes more negative than the 

resting potential is called hyper polarization

to the normal called resting potential as shown in 

3. It is important to note that the action potential of the 

most nerves system last up to 5 to 10ms. 
 

Figure 3: A single AP in response to a transient stimulation based 

on Hodgkin –Huxley model. The initiated time is t=0.4ms and the   

injected current i.e.%*(*+ � 80µ�/� ! for duration of 0.1ms
 

This model is complex due to imprecise linguistic I/P

variables and coupling of different parameters. The 

technique of Tsukamoto-fuzzy controllers on EEG signal 

modeling is more convenient under these con
 

3. Tsukamoto fuzzy controller on EEG signal 

Modeling 
The system of the classical EEG signal mode

two fuzzy I/ Ps   intensity (I) and duration 

stimulator for dendrites of the nerve cell and one fuzzy 

o/p namely membrane current (%*(*+) to be computed. A 

general scheme for controlling a desired value by the 

technique of Tsukamoto - FLC over the classical EE

signal model is shown in Figure 4. 
 

 

Figure 5: Fuzzy sets and decomposition for I/P variable intensity/ duration over the range [0, 1]
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A single AP in response to a transient stimulation based 

Huxley model. The initiated time is t=0.4ms and the   

for duration of 0.1ms 

This model is complex due to imprecise linguistic I/P-

variables and coupling of different parameters. The 

fuzzy controllers on EEG signal 

modeling is more convenient under these conditions. 

3. Tsukamoto fuzzy controller on EEG signal 

The system of the classical EEG signal model consist of 

duration (τ) as the 

stimulator for dendrites of the nerve cell and one fuzzy 

) to be computed. A 

general scheme for controlling a desired value by the 

FLC over the classical EEG 

 

Figure 4: A general scheme of Tsukamoto 

desired value. 
 

The general inference process based on the TSukamoto 

FLC proceeds in four steps: 

a) Construction of fuzzy sets and fuzzifications;

b) Formation of fuzzy inference rules;

c) Measurement of the adaptability and infer the 

conclusion and 

d) Aggregate the individual conclusion t

overall conclusion. 
 

Step-(a) Construction of fuzzy sets and fuzzifications: 

After identifying the relevant I/Ps 

the classical controller, our first step in designing the FLC 

should be to characterize the range of values for the 

and O/P - variables. Since the duration of the action 

potential of a nerve system in the classical controllers is 

in the range of 5 to 10 ms, so that we have

range of values for the both I/P - 

‘duration’ in the time interval of 0 to 10 ms in FLC. And 

since final injected current in 

RSTSU � 80µV/XSY, accordingly

of values for O/P- variable ‘membrane current’ as 0 to 

100 µA /� !  in FLC. 
 

Further we have to select meaningful linguistic states for 

each of the three variable and express them by 

appropriate fuzzy sets. Accordingly we choose as: 

Negative Large(NL); Negative Medium (NM); Negative 

Slow(NS); Almost zero(AZ); Positive Slow(PS); Positive 

Medium(PM)and Positive Large(PL). We

seven linguistic verbal adjectives to their corresp

numerical descriptions as : “about and below 0.13 ”; 

“about 0.26 ”; “about 0.39 ”; “about 0.52 ”;“about 0.65 ”; 

“about 0.78”; “about and above 0.91 ” respectively.
 

Representing these seven linguistic states of I/P and O/P 

linguistic variables by triangular shape fuzzy numbers as 

in Figure 5 and Figure 6 respectively.

 
Fuzzy sets and decomposition for I/P variable intensity/ duration over the range [0, 1]-is the time in ms.
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Tsukamoto - FLC for controlling 

The general inference process based on the TSukamoto - 

a) Construction of fuzzy sets and fuzzifications; 

rules; 

Measurement of the adaptability and infer the 

individual conclusion to obtain the 

Construction of fuzzy sets and fuzzifications: 

I/Ps and O/P - variables of 

the classical controller, our first step in designing the FLC 

rize the range of values for the I/Ps 

variables. Since the duration of the action 

system in the classical controllers is 

in the range of 5 to 10 ms, so that we have chosen the 

variables, ‘intensity’ and 

in the time interval of 0 to 10 ms in FLC. And 

 EEG signal model is 

accordingly we have chosen range 

variable ‘membrane current’ as 0 to 

Further we have to select meaningful linguistic states for 

each of the three variable and express them by 

opriate fuzzy sets. Accordingly we choose as: 

Negative Large(NL); Negative Medium (NM); Negative 

Slow(NS); Almost zero(AZ); Positive Slow(PS); Positive 

Medium(PM)and Positive Large(PL). We elaborate these 

seven linguistic verbal adjectives to their corresponding 

numerical descriptions as : “about and below 0.13 ”; 

“about 0.26 ”; “about 0.39 ”; “about 0.52 ”;“about 0.65 ”; 

“about 0.78”; “about and above 0.91 ” respectively. 

Representing these seven linguistic states of I/P and O/P 

iangular shape fuzzy numbers as 

in Figure 5 and Figure 6 respectively. 

is the time in ms. 
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Fuzzification of I/P-variables: The main purpose of the 

fuzzification is to interpret measurement of I/P 

(each expressed by the fuzzy approximation of the 

respective real number) and to express the associated 

measurement uncertainties. Let us consider an 

illustration. A fuzzification process (function) applied to 

the I/P - variable ‘intensity’ (I), is represented by

the fuzzification function has the for

where R denote the set of all fuzzy numbers. 

Then �]��� � 0.40� is a fuzzy number chosen by 

fuzzy approximation of the measurement (sensor reading) 

intensity (I) at �� � 0.40. 
 

The computation of fuzzy membership v

Figure 5, for which �]��� � 0.40� ^  0, is

shown in Figure 7. 

NS(0.40sec)� �._�$�.�!

�.9`$�.�!
� �.=!

�.=9
� 0.92;    AZ

�._�$�.9`

�.�!$�.9`
� �.�=

�.=9
� 0.08. 

 

Remaining all fuzzy membership values (from Figure 5

are zero such as, 
 

 N L (0.40) = N M (0.40) = P S (0.40) = P M (0.40) = PL (0.40) = 0

 

Figure 7 
 

Figure 8 
Figures (7 and 8): Fuzzification of I/P variable

�� � 0.40 and duration �� � 0.10
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Fuzzy sets and decomposition for O/P variable ‘membrane current’ (%*(*+) over the range [0,100] is the injected current 

inµ� � !⁄  

 
 

The main purpose of the 

fuzzification is to interpret measurement of I/P -variables 

(each expressed by the fuzzy approximation of the 

e real number) and to express the associated 

Let us consider an 

illustration. A fuzzification process (function) applied to 

variable ‘intensity’ (I), is represented by �].Then 

the fuzzification function has the form�]: �0,1� → d, 

where R denote the set of all fuzzy numbers. 

is a fuzzy number chosen by  �]as a 

fuzzy approximation of the measurement (sensor reading) 

The computation of fuzzy membership values from 

is as below and 

;    AZ�0.40OH�� �

y membership values (from Figure 5) 

0) = P M (0.40) = PL (0.40) = 0 

 

 

Fuzzification of I/P variables intensity for 

10. 

The computation of fuzzy membership values 

Figure 5, for which �e��� � 0.10
below and is as shown in Figure 8.
 

�f�0.10�  = 1. 

Remaining all memberships values from Fig(5) are zero 

such as NS(0.10) = AZ(0.10) = PL

PS(0.10) = NM(0.10) = 0. This shows that only one rule 

fires, namely NL(0.10) = 1. 
 

Step-(b) Formation of fuzzy inference rules

knowledge pertaining to the given control problem is 

formulated in terms of a set of fuzzy inference rules. To 

elicit fuzzy inference rules, for the 

(I), duration (τ) and O/P-variable membrane current 

(%*(*+) in our problem, the inference

canonical form of the following type,
 

If I = �
 and τ   = �
 then  %*(*+ � g
, I = 1, 2… n,
 

where �
,�
 and g
 are fuzzy numbers chosen from the set 

of fuzzy numbers( on the domains X,Y&Z

respectively)that represent the linguistic states NL, NM, 

NS, AZ, PM, PS and PL and 

function.  

Since each I/P- variable has, seven linguistic states, the 

total number of possible non- conflicting fuzzy inference 

rules are 7! � 49.In practice, instead of these 49 rules, a 

small subset of all possible fuzzy inference rules is often 

sufficient to obtain acceptable performance of

controllers. 

An appropriate subset of fuzzy rules derived intuitively 

by common sense reasoning is as follows:

Rule (1): If I is AZ and τ is NL then

Rule (2): If I is NS and τ is NL then 

Rule (3): If I is NM and τ is NL then  

Rule (4): If I is NM and τ is AZ then

Rule (5): If I is NS and τ is PS  then

Rule (6): If I is PS  and τ is NS then 

Rule (7): If I is   PL and τ is AZ then

Rule (8): If I is AZ and τ is NS then 

Rule (9): If I is AZ and τ is NM then
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) over the range [0,100] is the injected current 

zzy membership values from 

10� ^  0, is carried out as 

below and is as shown in Figure 8. 

Remaining all memberships values from Fig(5) are zero 

PL(0.10) =  PM(0.10) = 

s shows that only one rule 

mation of fuzzy inference rules: The 

knowledge pertaining to the given control problem is 

formulated in terms of a set of fuzzy inference rules. To 

elicit fuzzy inference rules, for the I/P-variables intensity 

variable membrane current 

) in our problem, the inference rules have the 

canonical form of the following type, 

, I = 1, 2… n,           (8)  

are fuzzy numbers chosen from the set 

( on the domains X,Y&Z- axes 

that represent the linguistic states NL, NM, 

and µij
�k� is a monotonic 

, seven linguistic states, the 

conflicting fuzzy inference 

In practice, instead of these 49 rules, a 

small subset of all possible fuzzy inference rules is often 

sufficient to obtain acceptable performance of the fuzzy 

An appropriate subset of fuzzy rules derived intuitively 

by common sense reasoning is as follows: 

 is NL then%*(*+  is   PL 

 is NL then   %*(*+  is PM 

 is NL then  %*(*+is NS 

 is AZ then%*(*+is AZ 

 is PS  then%*(*+is PL 

 is NS then  %*(*+   is PS 

hen%*(*+is PL 

 is NS then %*(*+is PS 

 is NM then%*(*+is PM 
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Step-(c) Measurement of the adaptability and infer the 

conclusion: Measurements of I/P-variables of fuzzy 

controller must be properly combined with relevant fuzzy 

information rules to make inference regarding the O/P- 

variables. This is the purpose of the inference engine. 

This process of finding inferred crisp O/P by inference is 

called rule strength computation or adaptability the 

rule or firing strength. We note that by the Tsukamoto 

fuzzy rules in the form given by ( 8), the consequence 

part of each rule is represented by fuzzy set  g
 with 

monotonic membership function lij  (m )and that 	
 is 

the matching degree of the ith rule. For the singleton 

input values (sensor readings) of the linguistic variables 

intensity(  % = �� ) and duration(τ= ��) the matching 

degree  	
 is obtained by  
 

	
 = lnj
(��) ˄ loj

(��), J =  1, 2 …  �                (9) 

Where “˄” denote the minimum operation. 
 

The overall inferred O/P result is taken as the weighted 

average of each rule’s output is given by  

 
m
 = µ

�j

$=(	
 ), J =  1, 2 …  �               (10) 

The final result is derived from the weighted average 

formula which is expressed as, 
 

m� =
∑  ;j rj

s
jtD

∑  ;j
s
jtD

                 (11) 

 

Where ‘n’ is a finite positive integer. Since each rule 

infers a crisp result, the Tsukamoto fuzzy model 

aggregates each rule’s O/P by the weighted average 

method. Therefore, this method avoids the time 

consuming process of defuzzication. 
 

Following the above mathematical algorithmic steps of 

the Tsukamoto fuzzy control model for the computation 

of final o/p result we proceed as: 

Utilizing fuzzy membership values from Figure 7 and 

Figure 8 and appropriate subset fuzzy rules that fired only 

(1 and 2), we write these rules for the values(sensor 

readings) of the I/P variables intensity (at x0  = 0.40) and 

duration (at y0  = 0.10) as below. 
 

 Rule (1): If x [= I=0.40] is A1[AZ=0.08] and y [=τ =0.10] 

is B1[=NL=1] then z [Imemb] is C1[=PL]. 

Rule (2): If x [= I=0.40] is A2[NS=0.92] and y [=τ =0.10] 

is B2[=NL=1] then z [Imemb] is C2[=PM]. 
 

 The computation for measure of adaptability of each rule 

is as follows: 
 

Adaptability rule-1:α1= lnD
(x0= 0.40) ˄ loD

(y0= 0.10) = 

min (0.08, 1) = 0.08 

Adaptability rule-2:α2= lnu
(x0= 0.40) ˄ loD

(y0= 0.10) = 

min (0.92, 1) = 0.92 

Where “ ˄” represents minimum -operation. 

We can check very easily adaptability of remaining six 

rules are zero: 

min(0,0) = min(0, 0) = min (0.920, 0) = min (0, 

0)=min(0,0) = min (0.0799,0) =0. 

The calculations in the conclusion rules 1 and 2 

correspond with cutting the fuzzy sets in the consequence 

part by height of the adaptability of the premise part are 

shown in Figure 9.

 
Figure 9: Graphical representation of Tsukamoto method 

 

Step-(d) Aggregate the individual conclusion to obtain 
the overall conclusion: -Final O/P result is derived from 

the weighted average formula as follows when there are 

two ‘If-Then’ rules are in action, 
 

m� =
;DrD�;uru

;D � ;u

.                (12) 

Now using the values	=,	!,m= �� m!in the above 

equation we get, 

 

m� =
�.�v∗v!��.`!∗xy

�.�v��.`!
=76.48                (13) 

 

Thus for the singleton I/Ps  (�� , ��) = (0.40, 0.10) of the 

linguistic variables intensity (I) and duration (τ) 

respectively by Tsukamoto fuzzy control we get desired 

O/P result i.e. membrane current (%*(*+) is, 
RSTSU = {|. }~ µ�/� !. 
 

4. Conclusion 
Tsukamoto FLC modeling provides a better, more 

consistent and more mathematical sound method of 

handling uncertainty raised due to the I/P linguistic 

variables of the classical EEG signal model and provide 

O/P result equivalent to the O/P result of classical EEG 

signal model (see relations 7 and 13). Further we note that 

FLC engineer is looking for a good enough solution and 

not necessarily optimal one. The overall study signify that 

the Tsukamoto– fuzzy control model have better 

performance in comparison to the classical mathematical 

model of EEG signals. Hence the model of the 

Tsukamoto -fuzzy control obtained from the classical 

mathematical model of EEG signal is catering the actual 

dynamics of the system. 
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