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Abstract: In this paper, we characterize some distributions using
the moments of k-records associated with a sequence of i.i.d
continuous random variables. The k-records are special cases of the
(upper) generalized order statistics introduced by Kamps (1995).
The basic idea comes from the Cauchy-Schwarz inequality.
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1. Introduction

The concept of generalized order statistics (gos) was
introduced by Kamps (1995). The random variables
U(r,n,m,k), 1< r< n are called uniform upper generalized
order statistics if they possess a joint probability density
function of the form

g(ul'uZ' un) - k(H] 1 y]) (H
u,)* ton the cone 0 <u; <wuy <- .<u, <l of
the n-dimensional Euclidean space R” , Where n>2, k>0
and M = (my,my, ..... my,_ 1) E R"_1 are parameters
such that y, =k+n+r+ m]>0 for all re
{1,2,.....n—=1} (v, = k). Cons1der a sequence {X,,n >
1} of independent and identically distributed (iid) random
variables (r,v’s) with a common continuous distribution
function (df) F. The upper generalized order statistics
(ugos) based on F (or ugos associated with {X,,,n = 1})
are defined by the quantile transformation X(r,n,ﬁl, k) =
F'l(U(r n,M,k)),1 <r <n.Whenm; =m, =-..=
my,_1 =—1, the resultlng ugos are called upper k-record
values. We denote the n" upper k-record value by X(n,k).
A fairly good account of gos and related statistics can be
found in Kamps (1995). For characterizations using gos
see Ahsanullah, M. (2000,2005), Claudia Keseling
(1999), Claudia Keseling and Kamps, U.(2003),
Cramer,E., Kamps,U. and Raqab, M. (2000), Kamps,U.
and Gather, U. (1997), Nayak, S. S. and Kunichi, M. C.
(2006,2008a,2008b), Ragab, M.Z. and Lina N. Abu-Lawi
(2004) and Khan et.al.(2013). In this paper, we
characterize the shifted Weibull distribution and some
others using the moments of the ugos.
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2. Preliminaries

Lemma 2.1: If E|X;|Y < o then E|X(n,k)|® <
o forall § <y and all n > 1 where o and y are positive
integers.

Proof: Let U(n,k) be the n'™ k -record associated with the
standard uniform distribution. Then X(n,k) = F'I(U(n,k)).
The p.d.f of U(n,k) is (Kamps, 1995)

(n— 1)|{ log(l_x)} 1_x)k10<X<l

Hence EIX(n,K)|® = [ = oo P @I (= log(1 —0}* (1 -
)1 dx = (n" S UF” 1(x)|V); ({~log( — )} 70 (1 -
(k=1y

)yé) % dxg(n o

Uy 1F~ 1(X)IVdX)y (- 10g(1—X)} =3 1-

(k=1)y 1—;

x) =% dx)
By Holder’s inequality. The right side is finite since

S IF71 @)V dx = E X]Y < o
by hypothesis and
1

-1y (k=1)y
{—log(1—x)} v (1—x) 9 dx

0
r (—(” LN 1)
y—20 e
=y S finite.
(ky - 5) y=5 t1
y—294
Lemma 2.2: Let f and g be any two square integrable
continuous functions defined on (0,1). Let a =

folf(x)dx and b = folg(x)dx. Then

Iy F)g()dx — ab | = (f; f2(x)dx — a®)? (f, g>(x)dx — b2)*
.1

if and only if
f(x)—a= Agk)
Proof: We have

— b) for some real A .

1 1
j f(gG)dx—ab| = | j (F() — a)(g(x) — b)dx
0 0

< A6 - a)?dx)? (J(g(x) —b)? dxy: by Cauchy-Schwarz

inequality.

= () f2()dx — a?)* (f, g*(x)dx — b?)".
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Equality holds in this inequality if and only if f(x) — a = A(g(x) — b) for some real A.

3. Characterizations
In this section, {X,,n = 1} is a sequence of independent and identically distributed (iid) random variables (r.v’s)
with a common continuous distribution function (df) F. We
assume that EIX; I*< oo so that EIX,|” < oo where o is a positive integer. {X(n,k), n > 1} is the corresponding sequence of
n" k-record values. By lemma 2.1, it follows that EIX(n,k)I* < 0. Put p,. = EX] , 0<r<2a.

Note that EX%*(n, k) = fo = 1),U(u) {=log(1 —w)}* 1 (1 —w*du 3.1
where U(u) = F1(u) .
Theorem 3.1:
a) Ifeitherk>1,a>1,n>2ork=1,0>2(even),n>2 and F'I(O) < 0 then there does not exist any d.f. F such that
, , 2n 1/2
IEX0K) — g 1= (30 — i )1/2 - Y= -1 (32)

b) Letk=l,a>1,n>2and F (0) > 0. Then (3.2) holds if and only if
F(t)=1—exp (— (w)ﬁ> 6> (peg —2)*, 1> 0.
¢) Letk=l,a(>1)o0dd,n>2and F’I(O) < 0. Then (3.2) holds if and only if

1
_ U —(—)¥\ 11 ;L
F(t):l—exp<—(("“’(‘+(”) 1>,if—(/1—,ua)a<t <o0and

1
F(t)=1-exp <_ (W)’H) Lif 0 <t <owwhered>0.

Proof: Taking f(u) = { F'(u)}* and g(u) = 1)'{ log (1 —w)}* (1 —u)k?
In (2.1) we notice that folf(x)g(x)dx = EX“(n, k) (from (3.1)) ,a=pu, , b =I,

Jy F2@)dx = iz, and

o 9*(0)dx = f; 5 (—log (1 — W}V (1 — Wk Ddu,

The substltutlon — log(l u) =t gives

2n
e~ @lk=1t p2(n-1) gy — 2 k—
fg (wdu = f(( D 20 gt = (n_ 1)(2k—1)2"—1'
Now 2.1 reduces to (3.2).
By (2.2), (3.2) holds if and only if { Flw}®= Ua+ Mg(u)-1) for some A real. (3.3)
-7 -
a) First let k >1, o > 1 and n > 2. Since k>1, g(u) is increasing in theinterval (0, uy) and decreasing in the interval (ug, 1)

where ,
n-1

uy = 1 — ex-1. Hence the right side of (3.3) is not monotonic in (0,1). But, the left side of (3.3) is non-increasing in
(0,1). Hence (3.3) cannot be satisfied for any d.f F.
(=log(1-u)"*

Now let k=1, a( >2) even ,n > 2 and F'l(O) < 0. Note that g(u) = TR

and g’(u) >0, 0<u< 1. Since the left side of (3.3) is non-decreasing, we must have A > 0. Hence the right side of (3.3) is
negative for

1
O<u<u =1-exp (— (W)nﬂ) . But, the left side of (3.3) is positive since o (>2) is even. Thus (3.3)

cannot be satisfied for any d.f F.
b) Since k = 1, we have g (u) > 0, 0 <u < 1. Since the left side of (3.3) is non-decreasing , we must have A > 0. Since F

'(0) > 0 and g(0) = 0, it follows that u,, — A > 0 and F~1(w) = {u, + A(g(w) — 1)}§ ,0<u<1.
Note that g'(x) = 1 — exp {—(x(n - 1)!)ﬁ} ,x>0.

Putting t = {u, + A (g(u) — 1)}% , we notice that t > (g — A )% >0 and

o (54
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1
Tt A — pg)(n— DN\L
=1-—exp —<(t A ja)(n )> ,t>(u(',—/1)%,/1 >0
c)Letk=1,0(>1)odd, n>2 and F’I(O) < 0. Asin case b) , we have L > 0.
Since F'I(O) <0 and o is odd , we observe from (3.3) that y, — 1 < 0,
F'l(u) < 0 for O< u < u; and F'l(u) > 0 for u; <u < 1, where u; is as in case a).
Let 0 < u < u;. Then F'(u) = -h(u), where h(u) > 0. From (3.3) , we have (= 1(w))% = u,, + A (g(u) — 1) . This gives

F'(w) = ~{~(ua + 2 (g(w) = 1)}* . 0<u<u,.
Proceeding as in case b) , we get

1

. a\n—1 N
F(t)=1—exp{—(w+(_t)) 1},—(/1 —Up)a<t<O0.

1
Now let u; < u < 1. In this case F~*(w) = {ug + A(g(w) — D}, uy <u<1.
Proceeding as in case b) , we get

Ft)=1—exp {— (—(n_l)!(j_“ﬁta)m} ,t>0.
Remark: 3.1: In case b) , the d.f is Weibull distribution with shifted origin.

Theorem 3.2: Let F be a continuous d.f symmetric about the origin. Let
k, a and n be integers such that
6))] k>1,a>1,n>2or
(i1) k=1,a>2(even),n>2 or
(iii) k=1,a(>1)odd, n=2.
a) In cases (i) and (ii) there does not exist any d.f F such that

1 an 2n-2 %
|EX(, k) = bpt|= (e — o2 <k7<(2£ 1)22 T+ (DA, ) bz) (G4
1+(-1)* _ - - -
where b = (2 )" and Apy = ((n——1)1)2f0 (log(1 —uw)* (1 —w)k tlogu) ™ *u*du.
b) In case (iii), (3.4) is true if and only if
F(t) = —— =, -0 <t <w,1>0.
1+exp( 2 )
Proof: Take f(u) = {F'(u)}" and
gw) = =D i Y ((—log(1 — W)™ (1 —wk 1 + (-1)%(—logw)" T uk~1)

In (2.1). Then folf(u)g(u)du
k"(_l)a 1 a -
2(n—-1)! fo U w)(—logu)™ L uk1du.

_1 kM (-1)* -

= ZEXO‘(TZ, k) + 200 1)'f {(—U(1 — w4 (—logu)™™ "

( from (3.1) and the fact that the symmetry of F about zero implies
U(u)——D(J—D)0<:<1)

2(n- 1)'f U*(u)(—log(1 —w)" (1 —w)*du

=—jj (1, j)+2(J ,),f 05 (D) (=log(1 — )11 - )00
=DDL(1,1).

' 1+( ) 2
Also,a=[,b= f D2() 00 = [, and

, 20— 2
fOI 0X(D)oo = Jz ((gj']% + (=D J> , where A, is as in (a).

Then (2.1) reduces to (3.4). By (2.2), (3.4) holds good if and only if

(071(MY' =05 = 0@ (0) — 0) for some A > 0. (3.5)

a) Note that the left side of (3.5) is non-decreasing in (0,1) whereas then right side is not non-decreasing in (0,1) in cases
(1) and (ii). Hence there does not exist any d.f F for which (3.4) is true.

b)Letk=1,n=2and a> 1 (odd). Then (3.5) reduces to

(uimy' = 5 log (T) ,0<u<.
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Since (F’l(u))‘1 is non-decreasing , it follows that A > 0. Since a is odd, we see that F'l(u) is negative or positive according
aso<u<Yorla2<u<l1.
First let 0 < u < ¥2. Then

1

1 -
I Sl S £
SO=- (0 ()
1 A
Putting 11 = — (3) (D 0o (1_—)> and solving for u, we get
() =—t——,0<0.
1+07C9)
Similarly for V2<u < 1, we get
() =—5L—.,0>0.
1+070
Since o is odd, we observe that

HWE ,—oo < [1<o,[]>0.

-2
1+00°
Remark 3.2: Note that in case b) F reduces to the logistic d.f when a = 1.
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