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Abstract:  In this paper, we have considered the estimation 

problem of three-parameter exponentiated log-logistic distribution. 

The parameters are estimated using likelihood based inferential 

procedure: classical as well as Bayesian. We have computed MLEs 

and Bayes estimates under informative and non-informative priors 

along with their asymptotic confidence, bootstrap and HPD 

intervals. The Bayesian estimates of the parameters of 

exponentiated log-logistic distribution are obtained using Markov 

chain Monte Carlo (MCMC) simulation method. We have obtained 

the probability intervals for parameters, hazard and reliability 

functions. The posterior predictive check procedure has been 

applied for evaluating the model fit. All the computations are 

performed in OpenBUGS and R software.  A real data set is 

analyzed for illustration of the proposed inferential procedures. 
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1.  Introduction 
  There are hundreds of continuous univariate 

distributions available in literature. Numerous classical 

distributions have been extensively used over the past 

decades for modeling data in several areas such as 

engineering, actuarial, environmental and medical 

sciences, biological studies, demography, economics, 

finance, and insurance. However, in many applied areas 

like lifetime analysis, finance, and insurance, there is a 

clear need for extended forms of these distributions, that 

is, new distributions which are more flexible to model 

real data in these areas, since the data can present a high 

degree of skewness and kurtosis. So, we can give 

additional control over both skewness and kurtosis by 

adding new parameters, and hence, the extended 

distributions become more flexible to model real data. 

Recent developments focus on new techniques for 

building meaningful distributions. 

 The modeling and analysis of lifetimes is an important 

aspect of statistical work in a wide variety of scientific 

and technological fields. The properties of the log-logistic 

distribution make it an attractive alternative to the log 

normal and Weibull distributions in the analysis of 

survival data, Bennett (1983) and Tadikamalla and 

Johnson (1982). It has a nonmonotonic hazard function. 

The shape of this distribution is very similar to that of the 

log-normal, but has a more tractable form than that of the 

log-normal which makes it more convenient than the log-

normal distribution when dealing with censored data. 

Srivastava and Shukla (2008) studied the log-logistic 

distribution as step-stress model. Balakrishnan and Malik 

(1987) gave the moments of order statistics from the 

truncated log-logistic distribution. This distribution has 

been also studied by Howlader and Weiss (1992). 

Lawless (2003) and Lee and Wang(2003)  provide an 

excellent review for the log-logistic distribution.   

 In recent years, new classes of models have been 

proposed based on modifications such as adding 

parameters to the existing models. Adding one or more 

parameters to a distribution makes it richer and more 

flexible for modeling data.  

 There are different ways for adding parameter(s) to a 

distribution. Marshall and Olkin (1997, 2007) added one 

positive parameter to a given (general) survival function. 

As described by Marshall and Olkin (2007) and Klugman 

et al.(2012), an exponentiated distribution can be easily 

constructed. It is based on the observation that by raising 

any baseline cumulative distribution function (cdf) 

( )baselineF x  to an arbitrary power 0α > , a new cdf  

  ( )( ) ( ) ; 0baselineF x F x
α

α= >   

is obtained with the additional parameter α . Following 

this idea, several authors have considered extensions from 

usual survival distributions. For instance, Mudholkar and 

Srivastava (1993) considered the exponentiated Weibull 

distribution as a generalization of the Weibull 

distribution. Gupta and Kundu (1999) introduced the 

exponentiated exponential distribution as a generalization 

of the usual exponential distribution and Nadarajah and 

Kotz (2006) proposed exponentiated type distributions 

extending the Frchet, gamma, Gumbel and Weibull 

distributions. Rosaiah, et al. (2006, 2007) studied the 

some properties and reliability test plan for exponentiated 

log-logistic distribution.  Chaudhary and Kumar (2013a) 
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obtained the maximum likelihood and Bayes estimators 

for the parameters and the reliability function of the two-

parameter exponentiated log-logistic distribution using 

Markov chain Monte Carlo simulation method. Santana et 

al.(2012) introduced the Kumaraswamy-log-logistic 

distribution, which includes exponentiated log-logistic 

distribution.   

 The cumulative distribution function(cdf) of the log-

logistic distribution is given by 

   ( )
( )

( )

/
; , ; 0

1 /
LL

x
F x x

x

β

β

λ
β λ

λ
= >

+
 

where 0β >  and  0λ >  are the shape and scale 

parameters, respectively.  

 The cdf of the exponentiated log-logistic(ELL) 

distribution is defined by raising ( )LLF x  to the power of 

0α > ,  namely ( ) ( )( )LLF x F x
α

= . The distribution 

function of ELL distribution with three parameters is 

given by 

  ( )
( )

( )

/
; , , ; 0

1 /

x
F x x

x

αβ

β

λ
α β λ

λ

  
= > 

+  

 (1)  

where 0α >  and 0β >  are shape parameters and 0λ >  

is a scale parameter. The exponentiated log-logistic 

distribution will be denoted by ( , , )ELL α β λ . For 1α = , 

the model reduces to the two-parameter log-logistic 

distribution. The exponentiated log-logistic model is 

much more flexible than the log-logistic distribution and 

can be used effectively for modeling lifetime data. It is to 

be mentioned here that this distribution has not been 

considered under Bayesian setup in the earlier literature. 

 The advent of Markov chain Monte Carlo(MCMC) 

sampling has flourished Bayesian inference throughout 

the world,  wide array of disciplines. The freely available 

software package known as Bayesian inference using 

Gibbs sampling(BUGS) has been in the forefront of this 

proliferation since the mid-1990s. However, more recent 

advances in this software, leading first to WinBUGS and 

now to an open-source version OpenBUGS, Thomas et al. 

(2006), Thomas (2010) and Lunn et al. (2013), including 

interfaces to the open-source statistical package R, (R 

Development Core Team, 2013) and Albert (2009), have 

brought MCMC to a wider audience. Problems, which 

would have been intractable a decade ago, can now be 

solved in short order with these software packages. We 

will use this software in our present study. 

 For Bayesian estimation, we also need to assume a 

prior distribution for the model parameters involved in 

the analysis. In this paper, Bayesian analysis has been 

preformed under different loss function assuming 

independent priors for the parameters. 

 A major difficulty towards the implementation of 

Bayesian procedure is that of obtaining the posterior 

distribution. The process often requires the integration, 

which is very difficult to calculate not only for high-

dimensional complex models even if dealing with low-

dimensional models. In such a situation, Monte Carlo 

Markov chain (MCMC) methods are very useful to 

simulate the deviates from the posterior density and 

produce the good approximate results. 

 The rest of the paper is organized as follows.  In 

Section 2, we have discussed the exponentiated log-

logistic distribution and its properties. The point 

estimation procedures for the parameters of the 

considered model under classical set-up and the 

confidence/bootstrap intervals have been constructed in 

Section 3. In Section 4, we have developed the Bayesian 

estimation procedure under independent priors for the 

parameters, gamma priors for shape parameters and 

uniform prior for scale parameter. To check the 

applicability of the proposed methodologies, a real data 

set has been analysed in Section 5. In this section, the ML 

estimators of the parameters, approximate confidence 

intervals are presented. We cover Bayesian analysis using 

the MCMC simulation in Section 6. In this section, the 

Bayes estimates and credible intervals of parameters, 

hazard and reliability functions are presented. In Section 

7 we have applied the predictive check method in order to 

give an assessment of the performance of the model for 

the given data. Finally, the conclusions have been given 

in Section 8.  

 

2. The model  analysis 
  The probability density function(pdf),  corresponding 

to (1), is given by 

     
( )

( )
1

/
( ; , , ) ; 0

1 /

x
f x x

x x

α β

αβ

α β λ
α β λ

λ
+

= >
 +  

   (2)

    

 The reliability/survival function is 

  
( )

( )

/
( ) 1 ; 0

1 /

x
R x x

x

αβ

β

λ

λ

  
= − > 

+  

 (3)

    

 The hazard rate function is 

  
( ; , , )

( ) ; 0.
1 ( ; , , )

f x
h x x

F x

α β λ

α β λ
= >

−
  (4) 

 The mode is given by 

  

1/
1

Mode ; 1.
1

β
αβ

λ αβ
β

 −
= > 

+ 
  (5) 

 The quantile function is given by 
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( )
1/

1/ 1 ; 0 1px p p
βαλ

−
−= − < <  (6) 

 The random deviate can be generated from ( , , )ELL α β λ

by 

       ( )
1/

1/ 1x u
βαλ

−
−= −  (7) 

where u has the (0, 1)U distribution. 

 

 
Figure 1: The probability density functions of ELL distribution 

for 2β =  and different values of α and λ . 

 

 Some of the typical exponentiated log-logistic density 

functions for 2β =  and different values of α  and λ  are 

depicted in Figure 1.  

 

 
Figure 2: The hazard functions of exponentiated log-logistic 

distribution for 2β = and different values of α and λ . 

 It is clear from the Figure 1 that the density function of 

the exponentiated log-logistic distribution can take 

different shapes. The distinct types of hazard shapes are 

illustrated in Figure 2 for some different parameter 

combinations of the exponentiated log-logistic 

distribution. 

  

3.  Maximum likelihood estimation (MLE)  
 Maximum likelihood estimation is one of the most 

popular methods for estimating the parameters of 

continuous distributions because of its attractive 

properties, such as consistency, asymptotic unbiased, 

asymptotic efficiency, and asymptotic normality. In this 

section, we discuss the maximum likelihood estimators 

(MLE’s) of the ( , , )ELL α β λ distribution and discuss their 

asymptotic properties to obtain approximate confidence 

intervals based on MLE’s. 

 Let 1( , , )nx x x= …  be a random sample of size n from 

( , , )ELL α β λ , then the log-likelihood function 

( , , | )xα β λ�  can be written as;   

( )

1

1 1

( , , | ) log log log

log 1 log 1

n
i

i

n n
i

i
i i

x
x n n

x
x

β

β

α β λ α β α
λ

α
λ

=

= =

 
= + + ∑  

 

   − − + +∑ ∑     

�

     (8)   

 

 To obtain the MLE’s of α , β  and λ , we can maximize 

(8) directly with respect to α , β  and λ  or we can solve 

the following system of non-linear equations.  

 ( ) ( )( )
1 1

log log 1 0
n n

i i
i i

n
x x

β β
λ λ

α α = =

∂
= + − + =∑ ∑

∂

�
 , 

 

( )

( )
( ) ( )

( )( )

1

1

log

log
1 0

1

n

i
i

n
i i

i
i

n
x

x x

x

β

β

α λ
β β

λ λ
α

λ

=

=

∂
= + ∑

∂

− + =∑
+

�

 (9) 

 
( ) ( )

( )( )1

1
0

1

n
i

i
i i

xn

x x

β

β

λβ ααβ

λ λ λ λ=

+∂
= − + =∑

∂ +

�
 

 Note that the MLEs α̂ , β̂ and λ̂ of α , β  and λ , 

respectively cannot be solved analytically. Numerical 

iteration techniques, such as the Newton-Raphson 

algorithm, are thus adopted to solve these equations. 

 

3.1 Approximate confidence intervals 
  The exact distribution of MLEs cannot be obtained 

explicitly. Therefore, the asymptotic properties of MLEs 

can be used to construct the confidence intervals for the 

parameters. Under some regularity conditions, the MLEs 

( )ˆ ˆ ˆˆ, ,θ α β λ= are approximately tri-variate normal 

 ( ) ( )( )1
3

ˆ 0, ( )N Iθ θ θ
−

− →  
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 where ( )I θ  is the variance matrix.  As ( )I θ  involves the 

unknown parameters, we replace these parameters by 

their corresponding MLEs to obtain an estimate ˆ( )I θ  as  

 

2 2 2

2

2 2 2

2

2 2 2

2
ˆ ˆˆ( , , )

ˆ( )I

α α β β λ λ

α β α λα

θ
β α β λβ

λ α λ β λ = = =

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 

∂ ∂ ∂ = −
 ∂ ∂ ∂ ∂∂
 
 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 

� � �

� � �
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(10) 

where, 
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 The diagonal elements of ( )
1

ˆ( )I θ
−

provide the 

asymptotic variances for the parameters α , β  and λ ,  

respectively. The ( )100 1  %γ−  confidence intervals for 

α , β  and λ can be constructed as 

/2ˆ ˆ( )z varγα α± ; 

/2
ˆ ˆ( )z varγβ β±  and (11) 

/2
ˆ ˆ( )z varγλ λ±  

 where /2zγ  is the upper percentile of standard normal 

variate. 

 

3.2 Bootstrap confidence intervals 
  In this section we propose the confidence intervals 

based on the bootstrapping. Bootstrap methods are widely 

used to improve estimators or to build confidence 

intervals for the parameters. Usually, they provide 

estimators with smaller standard errors, and confidence 

intervals with a coverage level closer to the nominal level 

than confidence intervals obtained by applying 

asymptotic results. The percentile bootstrap (Boot-p) 

method, proposed by Efron and Tibshirani (1986), is 

widely used in practice. We have used the parametric 

bootstrap method to construct confidence intervals for the 

parameters as well as the reliability and hazard functions. 

To estimate the ‘Boot-p’ confidence interval, we proceed 

as follows, Soliman et al.(2012): 

Step 1. From the original data ( )1, , nx x x= …  compute the 

ML estimates of the parameters: α , β  and λ  by 

solving the nonlinear equations (9).  

Step 2. Using the values of α̂ , β̂  and λ̂  in (3) and (4) 

with some mission time t , we obtain the ML 

estimates ( )R̂ t  and ( )ĥ t of the reliability and 

hazard functions.  

Step 3. Use α̂ , β̂ and λ̂ to generate a bootstrap sample 

( )* *

1
, ,

n
x x x

∗ = …  of size n from (2) by using (6) .  

Step 4. As in step 1, based on ( )* *

1
, ,

n
x x x

∗ = …  compute 

the bootstrap sample estimates of α , β , λ , ( )R t  

and ( )h t , say *α̂ , *β̂ , *λ̂ , ( )*
R̂ t  and ( )*

ĥ t . 

Step 5. Repeat steps 3 and 4 N  times representing N  

bootstrap MLE’s of ( ) ( )( ), , , ,R t h tα β λ  based on N 

bootstrap samples.  

Step 6. Arrange all *α̂ ’s, *β̂ ’s , *λ̂ ’s, ( )*
R̂ t ’s and ( )*

ĥ t

’s in an ascending order to obtain the bootstrap 

sample { }1 , , ,N
k kψ ψ… 1,2,3,4,5,k =  where *

1 ˆ ,ψ α≡

*
2

ˆ ,ψ β≡  *
3

ˆ ,ψ λ≡ *
4

ˆ( )R tψ ≡  and *
4

ˆ( )h tψ ≡ . 

   Let ( ) ( )kG z P zψ= ≤  be the cumulative 

distribution function of kψ . Define ( )1
kboot G zψ −=

for given z. The approximate bootstrap ( )100 1 %γ−  

confidence interval of kψ  is given by 

( ) ( )( )( )/ 2 , 1 / 2kboot kbootψ γ ψ γ− . 
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4.  Bayesian model formulation 
 Given a set of data  1( , , )nx x x= …  from ( , , )ELL α β λ , 

the likelihood function is given by            
( 1)

1

1 1

( , , | ) 1

n n n
i i

i i

x x
L x

ααβ β
α β

α β λ
λ λ λ

− +
−

= =

       = +∏ ∏            

 

 The Bayesian model is constructed by specifying the 

prior distributions for the model parametersα , β  and λ , 

and then multiplying with the likelihood function 

( ), , |L xα β λ  for the given data 1( , , )nx x x= …  to obtain 

the posterior distribution function using Bayes theorem. 

Denote the prior distribution of α , β and λ  as ( , , )p α β λ . 

The joint posterior is 

  ( , , | ) ( , , | ) ( , , )p x L x pα β λ α β λ α β λ∝  

 

Priors for the parameters 
 We assume the independent priors for the parameters. 

We have assumed informative priors for the shape 

parameters α  and β  whereas non-informative prior for 

the scale parameter λ . Non-informative prior refers to a 

prior for which we only know certain parameters’ value 

ranges or their importance; for example, there may be a 

uniform distribution. Let us suppose the gamma priors for

~ ( , )1 1G a bα , ~ ( , )2 2G a bβ  and uniform prior for 

~ ( , )3 3U a bλ   as 

 ( )
1

1 11
1 1 1

1

exp( ) ; 0, 0, 0
( )

a
ab

p b a b
a

α α α α−= − > > >
Γ

   

( )
2

2 12
2 2 2

2

exp( ) ; 0, 0, 0
( )

a
ab

p b a b
a

β β β β−= − > > >
Γ

 

and 

     3 3
3 3

1
( ) ;p a b

b a
λ λ= < <

−
.  

Thus, we have  

  ( , , ) ( ) ( ) ( )p p p pα β λ α β λ=   

 

Posterior distribution 
 The expression for the posterior can be obtained, up to 

proportionality, by multiplying the likelihood with the 

prior and this can be written as 

( ) ( )1 1 1 21 2
1, , |

b ba n a n n
p x e T

α β
α β λ α β λ

− ++ − + − −∝  (12) 

where  

                

( 1)
1

1
1 1

1
n n

i i

i i

x x
T

ααβ β

λ λ

− +
−

= =

     = +∏ ∏        

   (13)  

 The posterior is complicated and no close form 

inferences are possible. We, therefore, propose to 

consider MCMC methods to simulate samples from the 

posterior so that sample-based inferences can be easily 

drawn.  To implement MCMC calculations, Markov 

chains require a stationary distribution. There are many 

ways to construct these chains. During the last decade, the 

following Monte Carlo (MC) based sampling methods for 

evaluating high dimensional posterior integrals have been 

developed: MC importance sampling, Metropolis-

Hastings sampling, Gibbs sampling, and other hybrid 

algorithms. Gibbs sampling (Gelfand and Smith, 1990), 

the most popular MCMC sampling algorithm in the 

Bayesian computation literature, which is actually a 

special case of Metropolis-Hastings sampling, Metropolis 

et al. (1953) and Hastings (1970). 

  

Gibbs Sampler : Algorithm 

 Gibbs sampling belongs to the Markov update 

mechanism and adopts the ideology of “divide and 

conquer.” By using Gibbs sampling, we only need to 

know the full conditional distribution. Therefore, it is 

more advantageous in high-dimensional numerical 

computation. Gibbs sampling is essentially a special case 

of Metropolis-Hastings sampling, as the acceptance 

probability equals one. It is currently the most popular 

MCMC sampling algorithm in the Bayesian reliability 

inference literature. To carry out Gibbs sampling, the 

basic scheme is as follows: 

Step1: Compute the posterior distribution, upto 

proportionality, and specify the full conditionals, 

using (12), of the model parameters α , β and λ as 

• full conditional of α  given β , λ and x : 

 ( ) ( )1 11
1| , ,

ba n
p x e T

α
α β λ α

−+ −∝   

•   full conditional of β  given α , λ  and x  

 ( ) ( )1 22
1| , ,

ba n
p x e T

β
β α λ β

−+ −∝   

• full conditional of λ  given α , β  and x : 

 1( | , , ) np x Tλ α β λ−∝    

Step 2: Select an initial value ( )(0) (0) (0) (0)
 , ,θ α β λ=  to 

start the chain. 

Step 3: Suppose at the i
th

-step, ( ) , ,θ α β λ= takes the 

value ( )( ) ( ) ( ) ( ) , ,i i i iθ α β λ=  then from full 

conditionals, generate 

   ( 1)iα +  from ( )( ) ( )| , ,i i
p xα β λ  

   ( 1)iβ +  from ( )( 1) ( )| , ,i i
p xβ α λ+     and 

   ( 1)iλ +  from ( )( 1) ( 1)| , ,i i
p xλ α β+ + . 

Step 4: This completes a transition from ( )iθ  to ( 1)iθ +  
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Step 5: Repeat Step 3,  N  times. 

 

MCMC output : Posterior sample  

 Monitor the convergence using convergence 

diagnostics. Suppose that convergence have been reached 

after 'B' iterations (the burn-in period). Discard the 

observations ( )(1) (2) ( ), , , Bθ θ θ…  and retain the 

observations 

( )( ) ( )
1 1

;  1 1  ;  1,  2, , ;  1
B j l

B M l N j M l
+ + − + + − ≤ = ≥ 

 
…θ  

which are viewed as being an independent sample from 

the stationary distribution of the Markov chain that is 

typically the posterior distribution, where l  is the lag (or 

thin interval). 

 For the posterior analysis we have the MCMC output 

(posterior sample) ( )(1) ( ) ( ), , , ,j Mθ θ θ… … ,  where 

      ( )( ) ( ) ( ) ( ) , , ; 1,2, ,j j j j
j Mθ α β λ= = … . 

 Thus MCMC output is referred as the sample after 

removing the initial iterations (produced during the burn-

in period) and considering the appropriate lag. 

 The Bayes estimates of ( ) , ,θ α β λ= , under squared 

error loss function(SELF), are given by 

 ( ) ( ) ( )

1 1 1

1 1 1ˆ ˆˆ ;  ;  
M M M

j j j

j j jM M M
α α β β λ λ

= = =

= = =∑ ∑ ∑   (14) 

We shall use OpenBUGS software to obtain posterior 

samples. BUGS (Bayesian inference Using Gibbs 

Sampling) is a piece of computer software for the 

Bayesian analysis of complex statistical models using 

Markov chain Monte Carlo (MCMC) methods. 

OpenBUGS, with open source code, is a software 

package that implements MCMC algorithms and is able 

to analyse highly complex problems for the probability 

models available in OpenBUGS, Thomas et al.(2006). It 

is a powerful and flexible tool for Bayesian analysis. The 

modular framework of OpenBUGS provides an in depth 

and interactive analysis of the model with many built-in 

features and model extensions can easily be 

accommodated. Each new model (probability 

distribution) causes a new software system to be built. 

Model implementation is difficult for the probability 

distributions, which are not pre-defined in OpenBUGS. 

Several probability distributions useful in the field of 

reliability studies are incorporated into OpenBUGS, 

Kumar et al. (2010) and Lunn (2010).    

As the three-parameter exponentiated log-logistic 

distribution is not available in OpenBUGS, it requires 

incorporation of a module in ReliaBUGS, Lunn et 

al.(2013),  which is subsystem of OpenBUGS. A module 

dexpo.loglogistic3_T(alpha, beta, lambda) is written for 

three-parameter exponentiated log-logistic, the 

corresponding computer program can be obtained from 

authors, to perform full Bayesian analysis in OpenBUGS 

using the method described in Kumar et al. (2010), 

Kumar (2010) and Chaudhary and Kumar (2013b).  

 

5.    Data  
 The following real data set is considered for illustration 

of the proposed methodology. The data extracted from 

Ghitany et al. (2008), gives waiting times of 100 bank 

customers in (min) 
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 

3.3, 3.5,  3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 

4.7, 4.8, 4.9, 4.9, 5.0,  5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 

6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4,  7.6, 7.7, 8.0, 8.2, 8.6, 

8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,  10.9, 

11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 

13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 

17.3, 18.1, 18.2, 18.4, 18.9,  19.0, 19.9, 20.6, 21.3, 21.4, 

21.9, 23.0, 27.0, 31.6, 33.1, 38.5 

 

5.1. Computation of MLE and Model Validation  

  The maximum likelihood estimates (MLEs) are 

obtained by direct maximization of the log-likelihood 

function ( , , )α β λ�  given in (8).  

 
Figure 3:  The graph of empirical and fitted distribution function. 

  

 The advantage of this procedure is that it runs 

immediately using existing statistical packages such as R 

software (R Development Core Team, 2013). We 

consider the Newton-Raphson algorithm in R (Rizzo, 

2008) to compute the MLEs.   

  

Table 1.   MLE, standard error and 95% confidence 

interval (CI) 

Parameter MLE Std. Error 95% CI 

alpha 0.5787 0.1996 (0.1874, 0.9699) 

beta 2.8731 0.5326 (1.8292, 3.9170) 

lambda 10.9026 2.1506 (6.6874, 15.1179) 
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 The Table 1 shows the ML estimates, standard 

error(SE)  and   95 % Confidence Intervals for parameters 

, andα β λ . The value of loglikelihood is 

ˆ ˆˆ( , , ) 318.384α β λ = −� . The Akaike information criterion 

(AIC) and Bayesian information criterion(BIC) can be 

used to determine which model is most appropriate for 

the given data. For the given data set AIC = 642.769  and 

BIC = 650.584. 

 
Figure 4:   Probability-Probability(P-P) plot using MLEs as 

estimate 

 
Figure 5:   Quantile-Quantile(Q-Q) plot using  MLEs as 

estimate. 

  

 We compute the Kolmogorov-Smirnov (KS) distance 

between the empirical distribution function and the fitted 

distribution function when the parameters are obtained by 

method of maximum likelihood to check the validity of 

the model. The value of KS statistic is 0.052 and the 

corresponding p-value is 0.95.   

 The high p-value suggests that fit is satisfactory. We 

have plotted the empirical distribution function and the 

fitted distribution function in Figure 3. The P–P and Q–Q 

plots, Kumar and Ligges(2011),  for the fitted model are 

shown in Figure 4 and Figure 5.  It can be seen that the 

fitted exponentiated log-logistic distribution provides 

good fit to the given data.   

6.  Bayesian Analysis 
 We assume the independent gamma priors for 

( )1 1~ ,  G a bα , ( )2 2~ ,  G a bβ  and uniform prior for 

( )3 3,  ~ U a bλ  with hyper-parameter values 

1 1( 0.001)2 2a b a b= = = =
 

and ( 0.0,3a = =50.0)3b . We 

run the program code given as in Script 1 into 

OpenBUGS to generate two Markov chains at the length 

of 40,000 with different starting points of the parameters. 

We have chosen initial values for the parameters, wide 

spread over the parameter space, ( )0.5, 0.5, 5.0= = =α β λ  

for the first chain and ( )3.0, 2.5, 25.0= = =α β λ  for the 

second chain. The convergence is monitored using trace 

BGR plots. It can be observed that the Markov chains 

reached to the stationary condition very quickly, 

approximately 2000 iterations. Therefore, burn-in of 5000 

samples is more than enough to erase the effect of starting 

point(initial values). Finally, samples of size 7000 are 

formed from the posterior by picking up equally spaced 

every fifth outcome (to minimize the auto correlation 

among the generated deviates.), i.e. thin=5, starting from 

5001.  

 

Script 1: OpenBUGS script for the Bayesian analysis 

 

 

  

 

 

 

 

 

 

 

 

 

  

Therefore, we have the posterior sample from chain 1 and 

chain 2 as  ( )( ) ( ) ( )
, , ; 1, , 7000 ; 1, 2.

j j j

i i i j i= =…α β λ  We have 

considered the chain 1 for analysis as well as for 

convergence diagnostic plots, the chain 2 produces the 

similar result. 

 

6.1   Convergence diagnostics 
 Because of the Markov chain’s ergodic property, all 

inferences are implemented under the assumption that the 

Markov chain converges. Therefore, the Markov chain 

model 
{ 

 for( i in 1 : N ) 

 { 

 x[i] ~ dexpo.loglogistic3_T(alpha, beta, lambda)  

 f[i] <- density(x[i], x[i]) 

 reliability[i] <- R(x[i], x[i]) 

 } 

# Prior distributions of the model parameters 

 alpha ~ dgamma(0.001, 0.001) 

 beta ~ dgamma(0.001, 0.001) 

 lambda ~ dunif(0.0, 50.0) 

} 

Data 
 list(N=100, c(0.80,...,38.5)) 

 Initial values  
 list(alpha= 0.5, beta=0.5, lambda= 5.0)   # Chain 1 

 list(alpha=3.0, beta=2.5, lambda= 25.0)  # Chain 2 
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Monte Carlo convergence diagnostic is very important. 

The inferences are valid, if the simulated sample provides 

a reasonable approximation for the posterior density. 

Fundamental graphical diagnostics are the trace and the 

Brooks-Gelman-Rubin(BGR) plots. Trace plots, 

separately for each model parameter, are one of the oldest 

methods of qualitatively assessing MCMC sampler 

performance. The MCMC iteration number is on the x-

axis and the value of the parameter drawn at each 

iteration is on the y-axis successive values are joined by a 

line. When more than one chain has been run, the lines 

from all chains are plotted in different colors in the same 

panel. 

 Figure 6(left panel) shows the sequential realizations of 

the parameters of the model for chain 1. They look like 

white noise-just random swinging around in that range, 

without any consistent pattern. These are hallmarks of 

rapid MCMC convergence. Thus Markov chain seems to 

be mixing well enough and is likely to be sampling from 

the stationary distribution.  

 
Figure 6: The trace plot (left panel) and the Brooks-Gelman-

Rubin(BGR) plot(right panel) for alpha, beta and lambda. 

 The BGR convergence diagnostics is based on running 

multiple parallel chains from over-dispersed starting 

values. The convergence is assessed through an ANOVA-

type diagnostic test by calculating and comparing within- 

and between-chain variability.  General idea is to test if 

variability within the chain is higher than between chains. 

  OpenBUGS includes the Brooks-Gelman-Rubin (BGR) 

convergence statistic. The chains for a model parameter 

are judged to have converged if the ratio of between to 

within variability is close to one. The green line 

represents the between variability, the blue line represents 

the within variability, and the red line represents the ratio. 

Evidence for convergence comes from the red line being 

close to 1 on the y-axis and from the blue and green lines 

being stable (horizontal) across the width of the plot. 

 Figure 6(right panel) shows the BGR plots for the 

model parameters. There is no evidence that our posterior 

samples produced by OpenBUGS chains failed to 

converge, so we can proceed to use posterior samples for 

Bayesian inference. 

 

6.2   Posterior analysis 

6.2.1 Numerical summary  
 The numerical summary is presented for 

( )( ) ( ) ( )
1 1 1, , ; 1, , 7000

j j j
jα β λ = …  from chain 1.  

 We have considered various quantities of interest and 

their numerical values based on MCMC sample of 

posterior characteristics for exponentiated log-logistic 

distribution.  The MCMC results of the posterior mean, 

mode, standard deviation(SD), five point summary 

statistics (minimum, first quartile, median, third quartile  

and maximum),  2.5
th

 percentile,  97.5
th

 percentile, and 

skewness of the parameters , andα β λ are displayed in 

Table 2.  

  

Table 2.   Numerical summaries based on MCMC  

   sample of  posterior  characteristics  

Characteristics alpha beta lambda 

Mean 0.5795 2.9912 11.3276 

Standard  Deviation 0.2010 0.6090 2.3417 

Minimum 0.1462 1.4520 4.1020 

2.5th Percentile(P2.5) 0.2664 2.0410 6.9808 

First Quartile (Q1) 0.4316 2.5500 9.7085 

Median 0.5506 2.9075 11.2000 

Third Quartile (Q3) 0.7005 3.3350 12.8700 

97.5th Percentile(P97.5) 1.0495 4.4551 16.2700 

Maximum 1.2510 5.6440 20.8800 

Mode 0.4828 2.7750 10.9166 

Skewness 0.6746 0.7947 0.2417 

  

 Highest probability density (HPD) :  The HPD credible 

intervals for , andα β λ can be constructed by using 

algorithm given in Chen and Shao (1999).  

Let ( ){ }; 1, 2, ,j j Mα = …  be the corresponding ordered 

MCMC sample of ( ){ }; 1, 2, ,
j

j Mα = … . Then, the 

( )100 1 %γ−  HPD intervals for α  is  

  
( )( )( ) 1

,
k k Mγ

α α∗ ∗+ −  

 
  
 

,  

where k∗ is chosen so that  



Arun Kumar Chaudhary, Vijay Kumar 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 9 Issue 2                                                  Page 74 

 
( )( ) ( ) ( )( )( )( )1( )1 1 1

kk Mkk M k M M
min γγ γ

α α α α∗∗ + − + −   ≤ ≤ − −    

− = −  .  

Here [ ]χ denotes the largest integer less than or equal to

χ . In the same fashion, one can also obtain the Bayes 

HPD credible intervals for the other parameters. Table 3 

shows the symmetric credible intervals(SCI) and HPD 

credible intervals for parameters alpha, beta and lambda. 

We have also computed the 95% bootstrap confidence 

interval (BCIs), using the algorithm of the percentile 

bootstrap method, described in section 3.2, we present the 

mean of 1000 bootstrap samples of the parameters. 

 
Table 3.     Two-sided 95% intervals 

Parameter SCI HPD BCI 

alpha (0.266, 1.050) (0.231, 0.992) (0.310, 1.150) 

beta (2.041, 4.455) (1.901, 4.212) (2.118, 4.229) 

lambda (6.98, 16.27) (6.743, 15.950) (6.865, 14.699) 

 

6.2.2 Visual summary 

 The visual graphs include the boxplot, density strip 

plot, histogram, marginal posterior density estimate and 

rug plots for the parameters. We have also superimposed 

the 95% HPD intervals.  

   These graphs provide almost complete picture of the 

posterior uncertainty about the parameters. We have used 

the posterior sample ( )( ) ( ) ( )
1 1 1, ,

j j jα β λ ; 1, ,7000j = …  to 

draw these graphs. 

 

 
Figure 7(a):   Histogram, marginal posterior density  

   and 95% HPD interval based on posterior sample. 

 

The density strip plot introduced by Jackson (2008) for a 

univariate distribution as a shaded rectangular strip, 

whose darkness at a point is proportional to the 

probability density. It may be noted that density strip plot 

is more informative as compared to boxplot.  

 

 
Figure 7(b):   Boxplot and density strip plot of α , based on  

                       posterior sample. 

 

 

 
Figure 8(a):   Histogram, marginal posterior density  

                       and  95% HPD  based on posterior sample. 

   

 
Figure 8(b):   Boxplot and density strip plot of beta 
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Figure 9(a):   Histogram, marginal posterior density and 95% HPD 

interval based on posterior sample. 

 

 Probability histograms are the most popular non-

parametric method to estimate the density function. It 

gives an idea about skewness, behaviour in the tails, 

presence of multi-modal behaviour, and data outliers. It 

may be useful to compare the fundamental shapes 

associated with standard analytic distributions. 

 The kernel density estimates have been drawn using R 

software with the assumption of Gaussian kernel and 

properly chosen values of the bandwidths. It can be seen 

that λ  is symmetric whereas α �and β  show positive 

skewness.   

 Figure 7(a) represents the histogram, marginal 

posterior density, rug plot and 95% HPD interval for α . 

The boxplot and the density strip plot are displayed in 

Figure 7(b).   

 
Figure 9(b):  Boxplot and density strip plot of λ  

 

   We have plotted the similar graphs in Figure 8(a) and 

(b) for β .  The plots for λ  are shown in Figure 9(a)  and 

Figure 9(b). 

 

6.2.3 Comparison with MLE 

 For the comparison with MLE we have plotted three 

graphs. In Figure 10 the density functions ˆ ˆˆ( ; , , )f x α β λ

using MLEs and Bayesian estimates, computed via 

MCMC samples under gamma priors for α  and β  and 

uniform prior for λ , are plotted. 

 

 
Figure 10:  The density functions using MLEs and  Bayesian 

estimates, computed via MCMC. 

  

 The density corresponding to MLE has been plotted 

using the “plug-in” estimates of the parameters. We 

observe in the Figure 10, the MLEs and the Bayes 

estimates are quite close and fit the data very well.  

A further support for this finding can be obtained by 

inspecting the Figure 11.  

 

 
                    Figure 11:   Density estimates 

In Figure 11 we have plotted th th th2.5 , 50 and 97.5

quantiles of the estimated density, it can be considered as 

evaluation of model fit, based on posterior sample,  

   ( )( ) ( ) ( )
1 1 1, , ; 1, ,7000

j j j
jα β λ = … .  
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 We have computed the density function at each 

observed data point for 7000 posterior samples, 

  ( )( ) ( ) ( )
1 1 1; , , ; 1, ,100

j j j
if x iα β λ = … . 

 
6.2.4  Estimation of hazard and reliability functions 

  The posterior samples may be used to completely 

summarize the posterior uncertainty about the parameters 

, andα β λ . This is also true of any function of the 

parameters e.g. reliability and hazard functions. Suppose 

we wish to give point and interval estimates for reliability 

and hazard functions at the mission time t=4.1 (at the 19
th

 

observed data point). We have computed the hazard and 

reliability functions at mission time t=4.1 (at the 19
th

 

observed data point) for 7000 posterior samples, using 

logical function hrf() and reliability( ), (Kumar et al. 

2010) in OpenBUGS.  

 

 
Figure 12(a):   Visual summary of reliability function at t=4.1 

 

 
Figure 12(b):  Visual summary of hazard function at   t=4.1 

It can be computed directly using hazard and reliability 

functions given in (4) and (3), respectively. 

  ( )( ) ( ) ( )
1 1 14.1; , , ; 1, ,7000

j j j
h x jα β λ= = …   and  

     ( )( ) ( ) ( )
1 1 14.1; , , ; 1, ,7000

j j j
R x jα β λ= = … . 

 

 The histogram and marginal posterior density of the 

reliability and hazard functions are shown in Figure 12(a) 

and  Figure 12(b) respectively based on samples of size 

7000. The Gaussian kernel has been used for kernel 

density estimates.  

 It is evident from Figure 12 that the marginal 

distribution of reliability is negatively skewed whereas 

hazard is positively skewed.  

 

 

 
 

 
Figure 13: MCMC output of R(t = 4.1) and h(t = 4.1). Dashed 

line(...) represents the posterior median and solid 

lines(-) represent lower and upper bounds of 90% 

probability intervals (HPD) 

 

 A trace plot is a plot of the iteration number against the 

value of the draw of the parameter at each iteration. 

Figure 13 display 7000 chain values for the hazard 

4.1( )h t =  and reliability 4.1( )R t = functions, with their 

sample median and 90% credible intervals. 

 The MCMC results of the posterior mean, mode, 

standard deviation(SD), five point summary statistics 

(minimum, first quartile, median, third quartile  and 

maximum),  2.5
th

 percentile,  97.5
th

 percentile, skewness, 

95% symmetric credible intervals(SCI) and HPD credible 

intervals of reliability and hazard functions are displayed 

in Table 4.    
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Table 4.   Posterior summary for Reliability and Hazard 

functions at t=4.1 

Characteristics Reliability Hazard 

Mean 0.7975 0.0906 

Standard  Deviation 0.0334 0.0146 

Minimum 0.6575 0.0485 

2.5th Percentile(P2.5) 0.7279 0.0656 

First Quartile (Q1) 0.7752 0.0801 

Median 0.7995 0.0892 

Third Quartile (Q3) 0.8208 0.0998 

97.5th Percentile(P97.5) 0.8583 0.1226 

Maximum 0.9167 0.1559 

Mode 0.8044 0.0874 

Skewness -0.2720 0.4930 

95% SCI (0.7279, 0.8583) (0.0656, 0.1226) 

95% HPD  (0.7316, 0.8612) (0.0633, 0.1192) 

   

 The ML estimates of reliability and hazard function at 

t=4.1 are computed using invariance property of the 

MLE. We have ˆ( 4.1) 0.0915h t = =  and ˆ( 4.1) 0.8098R t = = .  

 The 95% percentile bootstrap confidence interval 

(BCIs) for reliability and hazard function at t=4.1, using 

the algorithm described in section 3.2, based on 1000 

bootstrap samples are (0.6563, 0.9982) and (0.0520, 0.2240),  

respectively. 

 Now we shall demonstrate the effectiveness of 

proposed methodology for the entire data set. For this, we 

have estimated the reliability function using posterior 

samples. Since we have an effective MCMC technique, 

we can estimate any function of the parameters. We have 

used the Kaplan-Meier estimate of the reliability function 

to make the comparison more meaningful.  

 ( ) ( )( ) ( ) ( )
1 1 1

1

1ˆ | , ,
M

j j j
i i

j

R x R x
M

α β λ
=

= ∑ ; 1i , ,n= …  

 ( ) ( )( ) ( ) ( )
1 1 1

1

1ˆ | , ,
M

j j j
i i

j

h x h x
M

α β λ
=

= ∑  

Here we have 100i = and 7000M = . 

 The Figure 14, exhibits the estimated reliability 

function (dashed line: 2.5 and 97.5
th th  quantiles; solid  

line: 50
th  quantile) using Bayes estimate based on MCMC 

output and the empirical reliability function (solid step-

line). The Figure 14 shows that reliability estimate based 

on MCMC is very close to the empirical reliability 

estimates.  

 We have plotted the estimated hazard function using 

Bayes estimate based on MCMC in Figure 15. 

  
Figure 14:  Reliability function estimate using MCMC and 

Kaplan-Meier estimate 

 

 
Figure 15:  Hazard function estimate using MCMC 

 

7.   Posterior predictive analysis 
 One of the best and most flexible approaches to 

examining model fit is the use of posterior predictive 

distributions, (Gelman 2003) and (Gelman et al. 2004).  

 To evaluate the fit of the posterior distribution of a 

Bayesian model, we can compare the observed data to the 

posterior predictive distribution. Gelman et al. (1996) 

propose a diagnostic procedure known as a posterior 

predictive checking using predictive replicates. Various 

forms of checking function may be calculated for both 

new data and actual observations to assess whether the 

model satisfactorily reproduces certain important aspects 

of the actual data. Thus such checks go beyond bias and 

precision. 

 The posterior predictive distribution is either the 

replication of observation x given the model (usually 

represented as repx ), or the prediction of a new and 

unobserved x (usually represented as newx ), given the 
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model. This is the likelihood of the replicated or predicted 

data, averaged over the posterior distribution 

( ) ( ) ( )rep rep
p x |x   p x |x p | x dθ θ= ∫  

 Modern Bayesian computational tools however provide 

straightforward solutions as one can easily simulate 

predictive samples if MCMC outputs are available from 

the posterior corresponding to the assumed model. 

 Most of the standard numerical and graphical methods 

based on predictive distribution can then be easily 

implemented to study the compatibility of the model. 

Comparing the predictive distribution repx  to the 

observed data x is generally termed a "posterior 

predictive check". 

 The graphical method is one of the best way to assess 

model adequacy based on posterior predictive 

distributions. 

 Implementation of posterior predictive simulation is 

relatively simple, given an MCMC-generated sample of 

size 2000 from the posterior distribution for the 

parameters in a model ( , , )θ α β λ= , and can often be 

incorporated as part of the MCMC algorithm itself. For 

each value of θ
 

simulated from the posterior, we 

generate a new observation from the sampling 

distribution for the data, using that parameter value, for 

every original observation in the sample. Thus, we have 

 

          ,( )rep j
ix ; 1, ,100i = …   

for each  ( )( ) ( ) ( )
1 1 1, ,

j j jα β λ  1, , 2000j = … . 

 In fact, we have predicated the entire data set and we 

have 2000 replications of each ; 1, ,100ix i = … . 

  

 
Figure 16:    Estimate of CDF  based on predicted values  

 

 We view the model-checking as a comparison of the 

data with the replicated data given by the model, which 

includes exploratory graphics, Shrestha and 

Kumar(2013). The estimate of CDF based on replicated 

data given by the model is displayed in Figure 16. In fact 

statistical graphics provides implicit or explicit model 

checks. Figure 17 represents the  Q-Q plot of predicted 

quantiles vs. observed quantiles.  We, therefore, conclude 

that the exponentiated log-logistic distribution is 

compatible with the given data set. 

 

 
Figure 17: Q-Q plot of predictive quantiles versus empirical 

quantiles 

 

Figure 18 exhibits graphical posterior predictive check 

of the model adequacy, solid line(   ) represents the 

posterior median and dashed lines(...) represent lower and 

upper bounds of 95% probability intervals, observed data 

is superimposed. 

 

 
Figure 18:  Graph of model fit 

 
 To obtain further clarity on our conclusion for the 

study of model compatibility, we have considered 
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plotting of density estimates of second smallest, second 

largest and 19
th

 smallest i.e. ( )(2) (99) (19), andX X X  

replicated future observations from the model with 

superimposed corresponding observed data. For this 

purpose, 2000 samples have been drawn from the 

posterior using MCMC procedure and then obtained 

predictive samples from the model under consideration 

using each simulated posterior sample. 

  

 
Figure 19:  Posterior predictive density of (19)X , vertical line 

represents corresponding observed value 

   

  

 
Figure 20: Posterior predictive distribution of the second smallest

( )
( 2 )

X , vertical lines represent corresponding observed values 

 

 The predictive data reflect the expected observations 

after replicating the experiment in future, having already 

observed x and assuming that the adopted model is true. 

Overall, the results of the posterior predictive simulation 

indicate that model fits these data particularly well. 

Model fit assessments based on posterior predictive 

checks should not be used for model selection, Ntzoufras 

(2009). 

 

 The Table 5 shows the MCMC results of the posterior 

mean, median, mode and 95% HPD credible intervals for 

      ( )(2) (3) (19) (80) (98), (99) (100), , , , andX X X X X X X  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The posterior predictive density estimates based on 

replicated future data sets are shown in Figure 19 and 

Figure 20 and Figure 21. Figure 20 represents the 

estimates corresponding to second smallest and Figure 21 

second largest predictive observations, whereas the same 

for 19
th

 smallest observation is shown in Figure 19. The 

corresponding observed values are also shown by means 

of vertical lines. 

 

 
Figure 21: Posterior predictive distribution of the ( )(99)

X ,  vertical 

lines represent corresponding observed value.  

  

As the Figures 19, 20 and 21 show, the posterior 

predictive distributions are centered over the observed 

values, which indicate good fit. In general, the 

distribution of replicated data appears to match that of the 

observed data fairly well. 

Table 5.  Posterior characteristics 

 Observed Mean Median Mode 95% HPD 

X(2) 0.80 0.84 1.04 0.78 (0.28, 1.41) 

X(3) 1.30 1.14 1.38 1.10 (0.49, 1.80) 

X(19) 4.10 4.12 4.43 4.17 (3.14, 4.97) 

X(80) 13.90 14.31 15.07 13.89 (12.07, 16.63) 

X(98) 31.60 33.10 36.26 29.90 (23.03, 45.46) 

X(99) 33.10 39.91 44.35 35.19 (25.12, 56.91) 

X(100) 38.50 59.57 68.02 49.90 (32.38, 95.44) 
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8.  Conclusion 
 The methods described to build a full framework to 

accommodate academic research and engineering 

applications seeking to implement modern computational-

based classical as well as Bayesian approaches related to 

exponentiated log-logistic distribution, especially in the 

area of reliability. We have proposed an integrated 

procedure for Bayesian inference using Markov chain 

Monte Carlo methods. For the sake of comparison, we 

have discussed the maximum likelihood estimation. The 

bootstrap percentile method has been used for the 

computation of confidence intervals of parameters and 

their functions. We have used exploratory data analysis 

techniques for the posterior analysis. We have shown that 

it is true for any function of the parameters such as hazard 

function, reliability etc. We have obtained the probability 

intervals for parameters, hazard and reliability functions. 

We have presented the model compatibility analysis via 

the posterior predictive check method.  We have applied 

the developed techniques on a real data set.  
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