Home| Journals | Statistics Online Expert | About Us | Contact Us
    About this Journal  | Table of Contents
Untitled Document

[Abstract] [PDF] [HTML] [Linked References]

 

Explicit Bounds on Certain Integral Inequalities and its Application

 

Jayashree V. Patil

Vasantrao Naik Mahavidyalaya, Aurangabad -431001, Maharashtra, INDIA.

Corresponding Address:
[email protected]

Research Article

 


Abstract: In this paper, we establish some new retarded integral inequalities in two variables. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of differential equation. Some applications are also given.

Keywords: Explicit bound, two independent variable, integral inequality, partial derivatives, boundedness.

 

Introduction
            In the development of the theory of differential and integral equations integral inequalities which provide explicit bounds on unknown functions take very important place. For instant the explicit bounds given by the well-known Gronwall-Bellman [1,3] inequality and its nonlinear generalization due to Bihari [2] are used to considerable extent in the literature [1-12]. The main purpose of this paper is to establish explicit bounds on retarded Gronwall-Bellman and Bihari-like inequalities in two variables which can be used to study the qualitative behavior of the solutions of certain classes of retarded partial differential equations. Some applications of one of our result are also given.


 

Main Results

 In what follows, R denotes the set of real numbers; R+ = [0, ) ,  = (0 , ), R1 = [1, ), J1 = [x01 X), and J2 = (y0, Y) are the given subsets of R,  D= J1 × J2 .The first order partial derivatives of a function z(x,y)  with respect to x and y are denoted by D1 z (x,y) and D2 z(x, y), respectively.

Theorem 2.1:  Let u, g, h Î C (D, R+) and a Î C1 (J1, J1), b Î C1 (J2, J2) be non decreasing with C1 (J2, J2) be nondecreasing with a (x) < x on J1,  b (y) <  y on J2. Let f (x,y) be nondecreasing in (x,y ) Î D If the inequality.

u (x,y) <  f (x,y) +  (s,t) u(s,t) dtds +  (s,t) u(s,t) dtds                                                                                       (2.1)

holds, then

u(x,y) < f (x,y) exp [G(x,y) + H(x,y)]                                                                                                          (2.2)

for (x,y) Î D , where

G (x,y) =  (s,t) dtds                                                                                                                                           (2.3)

H(x,y) =  (s,t) dtds                                                                                                                                     (2.4)

Proof : Since f(x,y) is positive and nondecreasing, we can restate (2.1) as

 <  1 +  (s,t) dtds +  (s,t)                                                                                   (2.5)

Let r(x,y) =    then

r(x,y) < 1 + (s,t) r(s,t) dtds +  (s,t) r (s,t) dtds                                                                         (2.6)

Define a function z(x,y) by the right - hand side of (2.6), then we have

z(x,y) = 1 +  (s,t) r (s,t) dtds +  (s,t) r (s,t) dtds                                                                                  (2.7)

Then it is clear that

r(x,y) < z (x,y), z(x0,y) = z(x,y0) = 1                                                                                                            (2.8)

Differentiate (2.7) with respect to x, we get

D1 z (x,y) =  (x,t) r(x,t) dt + ( a (x), t) r ( a (x)1 t) dt  a¢ (x)

Using (2.8), we have

≤  (x,t) z(x,t) dt +  ( a(x),t)  z (a (x), t) dt
 ≤ z(x,y)                                                                                         (2.9)

 <    (x,t) dt +  ( ,t) dt                                                                                                  (2.10)

Keeping y fixed in (2.10) , setting x = s and integrating it with respect to s from x0  to x, x Î J1 and making change of variable, we get

z(x,y) <  exp [G (x,y) + H (x,y)]

for (x,y) Î D

Using (2.8), we have

r(x,y) <  exp [G (x,y) +H (x,y)]

Hence

u (x, y) <  f(x,y) exp [G (x,y) + H (x,y)]

Theorem 2.2 : Let u,g,h Î  C( D, R+) and a Î C1 (J1, J1), B Î  C1 (J2,J2) be nondecreasing with a(x) <  x on J1, b(y)< y on J2. Let f(x,y) be nondecreasing in (x,y) Î  D and  p > 1 is a constant. If the inequality

uP (x,y) < fP (x,y) +  (s,t) u(s,t) dtds +  (s,t)u (s,t) dtds                                                                              (2.11)

holds, then

u(x, y)  < f (x, y)                                                                                        (2.12)

where

Q (x, y) =   (s, t) g(s, t) dtds                                                                                                           (2.13)

and

W (x,y) =  (s,t) h (s,t) dtds                                                                                                                               (2.14)

Proof : Since f(x, y) is positive and non decreasing in both variables equation (2.11) rewrite as

 < 1 +  (s,t) f1-P (s,t) dtds +  (s,t) f1-P (s, t) dtds                                                  (2.15)

Let r(x,y) =  then

rP (x, y) < 1 +  (s,t) f1-P (s,t) r(s,t) dtds +  (s,t) f1-P  (s,t) r(s,t) dtds                                                       (2.16)

Define a function z (x,y) by the right hand side of (2.16) then we have

z(x,y) = 1 +  (s,t) f 1-P(s,t) r (s,t) dtds +  (s,t) f1-P (s,t) r (s,t) dtds                                                   (2.17)

then it is clear that

rp (x,y) < z (x,y) ,  z (x0,y) = z(x,y0) = 1                                                                                                                 (2.18)

Differentiation (2.17) with respect to x, we have

D1 z (x,y) = (x,t) f1-P (x,t) r (x,t) dt + (x),t) f1-P (x,t) r (x,t) dt (x)

Using (2.18) we get

D1 z (x,y) <   (x,t) f1-P (x,t)  (x,t) dt +  (x,t) f1-P (x,t) (x,t) dt . a¢(x)

<  (x,t) f1-P (x,t) dt +  (x),t) f1-P (a(x), dt . a¢(x)                                                                       (2.19)

Keeping y fixed in (2.19), setting x = s and integrating it with respect to s from x0 to x, x e J1 and making change of variable, we get

   (x,y) <  +  (s,t) f1-P (s,t) dtds + (s,t)f1-P (s,t) dtds

 (x,y) < 1 + [  (s,t) f1-P (s,t) dtds +  (s,t) f1-P (s,t) dtds]                                                         (2.20)

Using (2.18) in (2.20) we get

rP-1 (x,y) < 1 +  [  (s,t) f1-P (s,t) dtds +  (s,t) f1-P (s,t) dtds]

rP-1 (x,y) < 1 +  [Q(x,y) + W (x,y)]

where Q(x,y) and W(x,y) are mentioned in (2.13) & (2.14) .

 Hence  u(x,y) <  f(x,y)                                                                                                (2.21)

Theorem 2×3: Let u, g, h Î C (D,R+),  f Î C(D, ) and a  Î C1 (J1,J1), b Î C1 (J2,J2) be non-decreasing with a (x) <  x on J1, b (y) < y on J2. For i = 1,2, let gi Î C (R+, R+) be non-decreasing function with gi (u) > 0 for u > 0 and

 < gi   .

If the inequality
u (x,y)  ≤  f(x,y) +  (s,t) g1(u (s,t)) dtds +  (s,t) g2 (u(s,t)) dtds                                     
         (2.22)

for (x,y) Î D,

(i)         In case g1 (u)   < g2 (u)

u (x,y) ≤ f(x,y)  [G2(1) + G (x,y) + H(x,y)]                                                                                                                   (2.23)

(ii)        In case g2 (u) ≤ g1(u)

u(x,y) < f (x,y)  [G1(1) + G (x,y) + H (x,y)]                                                                                                                  (2.24)

Where G(x,y) and H(x,y)  are defined by (2.3) and (2.4) and for i = 1,2  are the inverse functions of

Gi (r) = , r > 0, r0 > 0                                                                                                                                   (2.25)

and x Î J1, y Î J2 are so chosen that for i = 1,2

Gi (1) + G(x,y) + H (x,y) Î Dom ( )

respectively, for all x,y lying in [x0,x1] and [y0,y1].

Proof : Since f (x,y) is positive and non-decreasing in both variables (2.22) Can be rewrite as

 < 1+ (s,t)g1 dtds + (s,t)g2  dtds                                                                    (2.26)

 

 <1+  (s,t)g1 dtds +  (s,t) g2  dtds                                                  (2.27)

Let r (x,y) =  

 Hence we obtain

r(s,t) <1 +  (s1t) g1(r(s,t) dtds +  (s,t) g2 (r (s,t) dtds                                                                           (2.28)

Define z (x, y) by the right hand side of (2.28), we get

z(x,y) = 1 +  (s,t)g1 (r(s,t) dtds +  (s,t)g2 (r(s,t) dtds                                                                           (2.29)

 From (2.28), we have

r (s1t) < z (x,t), z(x,y0)= z (x0,y) = 1                                                                                                           (2.30)

Now
D1 z(x,y)=  (x,t) g1(u(x,t,))dt + (
a (x),t)g2 (u(a(x),t) dt) (x)                                                                               (2.31)

from (2.31) in (2.30), we get

D1z (x,y) < (x,y) g1 (z (x,t))dt + a¢(x)                                                                    (2.32)

D1 (z (x, y)) < g1 (z (x,y)) (x,t) dt + g2 (z(x,y)) ((a (x),t) g2 (z (a(x), t) dt(x)                                                   (2.33)

 

When g2 (u) < g1 (u), then from (2.33), we observed that

<  (x,t)dt +  a¢(x)                                                                             (2.34)

Using (2.25) in (2.34) ,  we get

D1 G1 (z(x,y)) <  (x,t)dt + a¢ (x)                                                                                              (2.35)

Keeping y fixed in (2.35) Setting x = s, then integrating with respect to s from x0 to x, xÎJ1

and making change of variable, we get

G1 (z(x,y)) < G1(1) +  (s,t)dtds +  (s,t) dtds                                                                                      (2.36)

Using the bound on z(x,y) from (2.36) in (2.30), we get required inequality in (2.23).

Applications:

In this section we present applications of the inequality in Theorem 1 to study the boundedness and uniqueness of the solutions of the initial boundary value problem for hyperbolic partial differential equations of the from

D2 D1 u (x,y) = F( x,y, u (x,y), u (x-h1(x), y-h2(y)),                                                                                                 (3.1)

u (x,y0) = e1(x), u (x0,y) = e2 (y) e1 (x0) = e2 (y0) = 0                                                                                    (3.2)

Where FÎ C(D × R2, R), e1 Î C1 (J,R) e2 Î C1 (J2,R), h1 Î C1 (J1, R+), h2 Î C1 (J2, R+) such that x-h1 (x) > 0,

 y1 - h2 (y) > 0, h1¢ (x) < 1, h2¢ (x) < 1 and h1(x0) = h2 (y0) = 0.

Our first result gives the bound on the solution of the problem (3.1) - (3.2)

Theorem 3.1: suppose that

|F(x,y,u,v) | <  g(x,y) |u| + k (x,y) |v|                                                                                                                        (3.3)

and |e1 (x) + e2(y) | <  p (x,y)                                                                                                                                               (3.4)

Where g, k Î C (D, R+) and k > 0 and let

M1 =   , M2 =                                                                                                    (3.5)

If u(x,y) is any solution of (3.1) - (3.2) then

|u(x,y) | ≤ p (x,y) exp (G(x,y)+  (x,y))                                                                                                                  (3.6)

where G(x,y) is defined by (2.3) and

 (x,y) = M1 M2                                                                                                    (3.7)

and

for .

Proof : It is easy to see that the solution u(x,y) of the problem (3.1) - (3.2) satisfies the equivalent integral equation

u(x,y) = e1 (x) + e2(x) + (s,t,u (x,y), u(x-h1 (x), y-h2 (y)))dtds                                                                          (3.8)

Using (3.3), (3.4),(3.5) in (3.8) and making change of variables , we get

|u(x,y)|  <p(x,y) +  (x,y) |u(x,t)| dtds + M1 M2                                                        (3.9)

Now suitable application of the inequality in theorem 2.1 to 3.9 yields  (3.6). The right-hand side of (3.6) gives us the bound on solution u(x,y) of (3.1) - (3.2) in terms of known function. Thus if the right-hand side of (3.6) is bounded, then we assent that the solution of (3.1)-(3.2) is bounded.

The next result deals with the uniqueness of the solution the problem (3.1) - (3.2)

 

Theorem 3.2: Suppose that the function F in (3.1) satisfies the condition

| F (x,y,u,v) – F(x,y, , )|  <  g (x,y) | u-  | + k(x,y) | v-  |                                                                                   (3.10)

g,k Î C (D,R) ,  and  let M1, M2, α, b ,  be as in theorem 3.1 then for problem (3.1) – (3.2) has at most one solution.
Proof : Let u (x,y) and  (x,y) be two solution of (3.1) – (3.2) on
D. Then we have

u(x,y) – (x,y) =                                              (3.11)
Using (3.10) in (3.11) and making change of variables we get

| u  (x,y) - (x,y) | <  (s,t) | z (s,t) -  (s,t))+ M1 M2  

Now suitable application of inequality in theorem (2.1) yields

| u  (x,y) -  (x,y) | <  0

Therefore u (x, y) =  (x,y)  i.e there is almost one solution of problem (3.1) - (3.2).

 


References

  • R. Bellman, The stability of solutions of linear differential equations, Duke Math. J. 10(1943), 643-647.
  •  I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta. Math. Acad. Sci. Hungar. 7(1965),81-94.
  • T.H.Gronwall,Note on the derivatives with respect to a parameter of the solutions of a system of differential equatons,Ann.Math.20(1919),292-296.
  • B.G. Pachpatte, On a certain retarded integral inequality and applications, j. in equal pure Appl. Math.5(2004)(Article 19)
  • Y. G. Sun, On retarded integral inequalities and their applications, J. Math. Anal. Appl. 301(2005), 265-275.
  • O. Lipovan, A retarded Gronwall like inequality and its applications, J. Math. Anal. Appl. 252 (2000)389-401.
  • Run Xu, Yuan Yong Sun, On retarded integral inequalities in two independent variables and their applications, Appl. Math. Comp. 182 (2006) 1260 – 1266.
  • Morro, A Gronwall like inequality and its applications to continuum thermodynamics, Bull. Un. Mat Ital. B6(1982) 553-562
  • O. Lipovan, Integral inequalities- for volterra equations, J. Math. Anal. Appl.322(2006) 349-358
  • Fanewi Meng, Wein Nian Li, On some new integral inequalities and their applications, Appl. Math. Comp.148(2004) 381 - 392.
  • Hongxia Zhang, Fanwei Meng, Integral inequalities in two independent vaniables for retarded volterra equatans, App. Math. Comp. 199 (2008)90-98.
  • M. H. M. Rashid, Explicit bounds on retarded Grouwall bellman inequality  Tamkang J. Math 43(2012)99

 

 

 
 
 
 
 
  Copyrights statperson consultancy www

Copyrights statperson consultancy www.statperson.com  2013. All Rights Reserved.

Developer Details