Home| Journals | Statistics Online Expert | About Us | Contact Us
    About this Journal  | Table of Contents
Untitled Document

[Abstract] [PDF] [HTML] [Linked References]

 

A New Sequential Non-Parametric Test for the Two Sample Problem

 

Keerthi M. Mathad*, I. D. Shetty­­

Department of Statistics, Karnatak University, Dharwad-580003, INDIA.

*Corresponding Address:

[email protected]

Research Article

 


Abstract: A simple sequential non-parametric test for the two-sample problem is proposed. A method of deriving its ASN function for uniform and exponential distribution is given and their adequacy confirmed by simulation. The test is based on the normal approximation to the distribution of U-statistic. We also consider the small sample sensitivity. We restrict ourselves to the Lehmann alternative. The test is found to be performing well even for small sample size.

Keywords: Sequential; non-parametric; two-sample problem; average sample number; Lehmann alternative.


 

1. Introduction

Phatarfod and Sudbury (1988) considered a Wald-type test for the two-sample problem. Unlike in Bradley, Merchant and Wilcoxon (1966) they exploited the normal approximation to the Wilcoxon Mann-Whitney statistic. They first considered the Lehmann alternative and later on wider type of alternatives.

In this paper we consider a Wald-type test for the two-sample problem. We take 1 2 3, 4. Here we wish to make a judgment between two new treatments and there is no prior preference involved. There would be a region of indifference5, where, if the true situation was6, it would not matter which of the two treatments was chosen. We propose the following Sequential test of strength7. Observations are taken from the X and Y populations in pairs. At each stage, the U-statistic

8

Where              9

1=Median of X1, X2, X3 and      1=Median of Y1,Y2, Y3
is calculated.

Sampling is continued as long as

1          Where              1        and                  1

And 1 or 1 is accepted according as the R.H.S or the L.H.S inequality is the first not satisfied.

 

2. Mean and Variance of the U-statistic when 1

 MEAN of U is given by 11.

VARIANCE of U is given by

Var (U)   =1

Where, 1 = Covariance between the two kernels wherein cX observations and dY observations are in common between the two kernels.                                

Var (U)1 1            1                                         (2.1)

3. Mean and variance of the U-statistic when 1 and 1

MEAN is given by       1

VARIANCE of U is given by

Var(U)=1

Where, 1 =Covariance between the two kernels wherein cX observations and dY observations are in common between the two kernels.        

Var(U)1

1                                               (3.1)

Where, 1,1,1,1,1,1,1,1,1are as defined earlier. Details are omitted for the sake of brevity.     

4. The Sequential Non-Parametric Test

We have developed the SPRT based on the statistic U using the normal approximation to our statistic U when n is large for testing the simple hypothesis 1 1 Vs1.

I.e. the continuation region at stage m is given by

1

Where 1 and 1

 

5. The Average Sample Number

The sample size needed to reach a decision in a sequential or a multiple sampling plan is a random variable N, because at any stage of the experiment the decision to terminate the process depends on the results of the observations made earlier. The distribution of this random variable depends on the true distribution of the observations during the sampling process.

The ASN is given by

E 1(n) = L (1) log B+ [1-L (1)] log A/ E 1(z)      where 1 is the parameter

If E 1(z) =0 then, E (n) =-logAlogB/E (z­2)

Where    E (z­2) = (1 0-1 1)2/1 2   i.e. E (n) = (-log A log B/(1 0-1 1)2)*1 2

For this test the ASN function was obtained. To derive the ASN function, we note that the ASN function of our test is given by

E(N/K)=( L(K)log B+[1-L(K)]log A)/ E(z)          Where, E(z)=1

 The following tables and graphs give the ASN for different values of k0

 

The values of ASN function for 1 and the corresponding graph.

Table 1

1

1

1

1

K

1

-1

0.8935

0.04999

5.45

0.5

-0.75

0.8443

0.09901

5.81

0.573

-0.5

0.795

0.1866

6.19

0.637

0.25

0.7459

0.3238

6.49

0.6977

0

0.6967

0.5

6.62

0.756

0.25

0.6475

0.67609

6.49

0.8148

0.5

0.5983

0.81335

6.19

0.8742

0.75

0.5491

0.901

5.81

0.935

1

0.5

0.95

5.45

1

                       

The values of ASN function for 1 and the corresponding graph

Table 2

1

1

1

1

K

1

-1

0.8240

0.04999

6.34

0.6

-0.75

0.7835

0.09901

6.81

0.652

-0.5

0.743

0.1866

7.28

0.701

-0.25

0.7025

0.3238

7.66

0.749

0

0.662

0.5

7.81

0.797

0.25

0.6215

0.67609

7.66

0.846

0.5

0.581

0.81335

7.28

0.895

0.75

0.5405

0.901

6.81

0.946

1

0.5

0.95

6.34

1

 

The values of ASN function for 1 and the corresponding graph

 

 

Table 3

1

1

1

1

K

1

-1

0.744

0.04999

8.07

0.7

-0.75

0.7135

0.09901

8.72

0.736

-0.5

0.6830

0.1866

9.38

0.773

-0.25

0.6525

0.3238

9.91

0.809

0

0.6220

0.5

10.109

0.845

0.25

0.5915

0.67609

9.91

0.883

0.5

0.5610

0.81335

9.38

0.921

0.75

0.5305

0.901

8.72

0.959

1

0.5

0.95

8.07

1

 

The values of ASN function for 1 and the corresponding graph

Table 4

1

1

1

1

K

1

-1

0.6599

0.04999

11.98

0.80

-0.75

0.6391

0.09901

12.93

0.825

-0.5

0.6192

0.1866

13.94

0.848

-0.25

0.599

0.3238

14.61

0.873

0

0.579

0.5

15.33

0.898

0.25

0.559

0.67609

14.61

0.923

0.5

0.539

0.81335

13.94

0.949

0.75

0.519

0.901

12.93

0.975

1

0.5

0.95

11.98

1

 

The values of ASN function for 1 and the corresponding graph

Table 5

1

1

1

1

K

1

-1

0.577

0.04999

16.38

0.90

-0.75

0.5673

0.09901

17.92

0.913

-0.5

0.557

0.1866

19.83

0.926

-0.25

0.5481

0.3238

20.67

0.937

0

0.5385

0.5

32.60

0.949

0.25

0.529

0.67609

20.77

0.961

0.5

0.5192

0.81335

19.39

0.974

0.75

0.5096

0.901

17.89

0.987

1

0.5

0.95

16.39

1

The test has greater ASN for the case K­0=0.9

6. Average Sample Number for Uniform Distribution

We have compared our test with other tests for the same problem. We have considered two distributions, namely Uniform and Exponential distributions. We have found the mean and variance for the two distributions and later found the ASN function.

We have the uniform distribution

1                         1

1                         1

We have obtained the mean and variance of the statistic U under uniform distribution. The calculation is omitted for the sake of brevity.

 

 

 

 

The ASN for different values of 1

For 1

 

Table 6

1

1

1

1

1

-1

0.3973

0.299

12.28

-0.75

0.4101

0.262

13.36

-0.5

0.4229

0.206

14.457

-0.25

0.4358

0.186

15.35

0

0.4487

0.148

15.4

0.25

0.4615

0.111

15.348

0.5

0.4743

0.0742

14.483

0.75

0.4871

0.0372

13.382

1

0.5

0

12.28

 

 1

Table 7

1

1

1

1

1

-1

0.3642

0.4

9.41

-0.75

0.3812

0.348

10.199

-0.5

0.3982

0.297

11.006

-0.25

0.4151

0.247

11.63

0

0.4321

0.197

11.65

0.25

0.4491

0.147

11.63

0.5

0.4661

0.097

10.99

0.75

0.483

0.049

10.199

1

0.5

0

9.41

 

For 1

 

Table 8

1

1

1

1

1

-1

0.3322

0.4999

7.77

-0.75

0.532

0.4341

8.39

-0.5

0.3742

0.3696

9.02

-0.25

0.3951

0.3066

9.51

0

0.4161

0.2441

9.62

0.25

0.4371

0.1824

9.51

0.5

0.4581

0.1211

9.01

0.75

0.479

0.0606

8.39

1

0.5

0

7.77

 

For 1

Table 9

1

1

1

1

1

-1

0.3012

0.6

6.72

-0.75

0.3261

0.519

7.23

-0.5

0.3509

0.441

7.748

-0.25

0.3758

0.3647

8.167

0

0.4006

0.2901

8.25

0.25

0.4255

0.216

8.15

0.5

0.4503

0.1438

7.747

0.75

0.4752

0.0716

7.23

1

0.5

0

6.72

 

 

 

For 1

Table 10

2

4

6

9

3

-1

0.2715

0.7

6.00

-0.75

0.3

0.6039

6.434

-0.5

0.3286

0.5113

6.87

-0.25

0.3572

0.4217

7.227

0

0.3858

0.3345

7.31

0.25

0.4143

0.249

7.225

0.5

0.4429

0.165

6.87

0.75

0.4714

0.0826

6.434

1

0.5

0

6.00

 

7. Average Sample Number for Exponential Distribution

We now consider the exponential distribution we have found the mean and variance for the distribution and later found the ASN function.

   We have the exponential distribution

4                                 5

6                          7

We have obtained the mean and variance of the statistic U under exponential distribution. The calculation is omitted for the sake of brevity.

 

The ASN for different values of δ

For 8

Table 11

9

1

7

1

2

-1

0.3313

0.3

7.738

-0.75

0.3524

0.258

8.352

-0.5

0.3735

0.2188

8.977

-0.25

0.3946

0.1804

9.48

0

0.4156

0.1431

9.5

0.25

0.4367

0.1066

9.48

0.5

0.4578

0.0706

8.976

0.75

0.4789

0.0352

8.352

1

0.5

0

7.738

 

For  3

Table 12

3

5

8

2

4

-1

0.2839

0.4

6.28

-0.75

0.3109

0.3417

6.739

-0.5

0.3379

0.2868

7.206

-0.25

0.3649

0.2349

7.577

0

0.3919

0.1858

7.62

0.25

0.4189

0.1373

7.587

0.5

0.4459

0.0908

7.212

0.75

0.4729

0.0452

6.742

1

0.5

0

6.28

 

  

 

 

For 1

Table 13

2

5

8

2

5

-1

0.2418

0.5

5.46

-0.75

0.2741

0.422

5.837

-0.5

0.3064

0.3511

6.218

-0.25

0.3386

0.2855

6.518

0

0.3709

0.2237

6.55

0.25

0.4032

0.1650

6.517

0.5

0.4355

0.1086

6.214

0.75

0.4677

0.0539

5.837

1

0.5

0

5.46

 

For 6

Table 14

3

6

9

3

7

-1

0.2049

0.6

4.96

-0.75

0.2418

0.5

5.27

-0.5

0.2787

0.4117

5.598

-0.25

0.3156

0.3319

5.86

0

0.3525

0.2584

5.91

0.25

0.3893

0.1899

5.86

0.5

0.4262

0.1246

5.598

0.75

0.4631

0.06171

5.27

1

0.5

0

4.96

 

For 8

 

Table 15

 

4

7

1

4

9

-1

0.1729

0.7

4.62

-0.75

0.2138

0.5747

4.901

-0.5

0.2547

0.4681

5.186

-0.25

0.2956

0.3743

5.415

0

0.3365

0.2896

5.52

0.25

0.3773

0.2118

5.414

0.5

0.4182

0.1386

5.185

0.75

0.4591

0.0684

4.901

1

0.5

0

4.62

Conclusions

ASN for different values of 1

For 2

For 3

For 4

For 5

For 6

Uniform

Exponential

Uniform

Exponential

Uniform

Exponential

Uniform

Exponential

Uniform

Exponential

12.28

7.73

9.41

6.28

7.77

5.46

6.72

4.96

6.00

4.62

13.36

8.35

10.19

6.73

8.39

5.83

7.23

5.27

6.43

4.90

14.45

8.97

11.006

7.206

9.02

6.21

7.74

5.59

6.87

5.18

15.35

9.48

11.63

7.57

9.51

6.51

8.16

5.86

7.22

5.41

15.19

9.32

11.44

7.46

9.36

6.43

8.03

5.77

7.11

5.34

15.34

9.48

11.63

7.58

9.51

6.51

8.15

5.86

7.22

5.41

14.48

8.97

10.99

7.21

9.01

6.21

7.74

5.59

6.87

5.18

13.38

8.35

10.19

6.74

8.39

5.83

7.23

5.27

6.43

4.90

12.28

7.73

9.41

6.28

7.77

5.46

6.72

4.96

6.00

4.62

 

The results appear in the table. It is seen that for the exponential distribution ASN behaves better than the uniform in having smaller error probabilities and lower ASN, the ASN in general being less than half the fixed sample size for the test of the difference of two means from normal populations with equal known variance.

References

  1. Abraham Wald (1947). Sequential Analysis, New York: John Wiley and Sons, Inc. Chapman and Hall, Ltd, London.
  2. Bradley, R.A, Merchant, S.D. and Wilcoxon, F. (1966). Sequential rank tests II modified two sample procedures. Technometrics, 8, 615-623.
  3. Cox. D.R. (1952). Sequential tests for composite hypotheses Proceedings of the Cambridge Philosophical society, 48, 290-299.
  4. Ghosh, B.K.(1970). Sequential tests of Statistical Hypotheses. Reading, M.A; Addison-Wesley.
  5. Gibbons. J.D and Subhabrato Chakraborti. (1992). Non-parametric Statistical Inference. Marcel Dekker, Inc. New York.
  6. H.B. Mann and D.R. Whitney. (1947). on a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist, 18, 50-60.
  7. H.F. Dodge and H.G. Romig. (1929). A Method of Sampling Inspection, The Bell System Technical Journal, Vol.8, pp.613-631.
  8. H.Scheffe. (1943). Statistical Inference in the Nonparametric case. Ann. Math. Statist. 14, 305-32.
  9. Hoeffding, W. (1948). A class of statistics with asymptotic normal distribution, Ann. Math. Statist, 19, 293-325.
  10. Lai, T.L. (1975). On Chernoff-Savage Statistics and Sequential rank tests. Ann. Statist. 3, 825-845.
  11. Lehmann, E.L. (1951). Consistency and Unbiasedness for certain non-parametric tests, Ann. Math. Statistics, 22, 165-179.
  12. Lehmann, E.L. (1975). Non-parametric, San Francisco: Holden-Day.
  13. Mathisen, H.C. (1943). A method of testing the hypothesis that two samples are from the same population. Ann. Math. Statistics, 14, 188-194.
  14. Miller, R. G. Jr. (1969). Sequential signed-rank test. J. Amer. Statist. Assoc. 65, 1554-1561.
  15. Miller, R. G. Jr. (1972). Sequential rank tests-one sample case. Proc. Sixth Berkeley Symp.Math Statist.Prob. 1, 97-108.
  16. Phatarfod, R.M. and Aidan Sudbury. (1988). A simple Sequential Wilcoxon test. Austral. J. Statist, 30(1), 93-106.
  17. Pitman, E. J.G. (1948). Notes on non-parametric statistical inference. Columbia University.
  18. Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Non parametric Statistics, Wiley, New York.
  19. Savage, I. R, and Sethuraman, J. (1966). Stopping time of a rank order sequential probability ratio test based on Lehman alternatives. AMS 37, 1154-1160.
  20. Shetty, I.D, and Z. Govindarajalu. (1988). A two-sample test for location, Comm. in Statistics-Theory and Methods, 17, 2389- 2401.
  21. Shetty, I.D. and Bhat, S.V. (1993). Some Competitors of Mood’s Median test for the location alternative, Journal of Karnataka University-Science, 37, 11, 138-146.
  22. Wilcoxon, F, Rhodes, L.J. and Bradley, R.A. (1963). Two Sequential two-sample grouped rank tests with applications to screening experiments, Biometrics, 19, 58-84.

 

 

 
 
 
 
 
  Copyrights statperson consultancy www

Copyrights statperson consultancy www.statperson.com  2013. All Rights Reserved.

Developer Details